
Monolithic 3D IC Designs for Low-Power Deep Neural
Networks Targeting Speech Recognition

Kyungwook Chang1, Deepak Kadetotad2, Yu Cao2, Jae-sun Seo2, and Sung Kyu Lim1

1School of ECE, Georgia Institute of Technology, Atlanta, GA
2School of ECEE, Arizona State University, Tempe, AZ

k.chang@gatech.edu, limsk@ece.gatech.edu

Abstract—In recent years, deep learning has become widespread
for various real-world recognition tasks. In addition to recognition
accuracy, energy efficiency is another grand challenge to enable local
intelligence in edge devices. In this paper, we investigate the adoption of
monolithic 3D IC (M3D) technology for deep learning hardware design,
using speech recognition as a test vehicle. M3D has recently proven to
be one of the leading contenders to address the power, performance
and area (PPA) scaling challenges in advanced technology nodes. Our
study encompasses the influence of key parameters in DNN hardware
implementations towards energy efficiency, including DNN architectural
choices, underlying workloads, and tier partitioning choices in M3D.
Our post-layout M3D designs, together with hardware-efficient sparse
algorithms, produce power savings beyond what can be achieved using
conventional 2D ICs. Experimental results show that M3D offers 22.3%
iso-performance power saving, convincingly demonstrating its entitlement
as a solution for DNN ASICs. We further present architectural guidelines
for M3D DNNs to maximize the power saving.

I. INTRODUCTION

Deep neural networks (DNNs) have become ubiquitous in many
machine learning applications, from speech recognition and natural
language processing, to image recognition, and computer vision.
Large neural network models have proven to be very powerful in
all the stated cases, but implementing energy-efficient DNN ASIC
is still challenging because (1) the required computations consume
large amounts of energy, (2) the memory needed to store the weights
are prohibitive, and (3) excessive wire overhead exists due to a large
number of connections between neurons, which makes a DNN ASIC
a heavily wire-dominated circuit.

Modern DNNs may require >100M parameters [1] for large-
scale speech recognition tasks. This is impractical using only on-
chip memory, and hence offloading storage to an external DRAM
is required. With the introduction of an external DRAM, however,
the bottleneck for computation efficiency is now determined by the
parameter fetching from DRAM [2]. To mitigate this bottleneck,
recent works have compressed the neural network weights and
substantially reduced the amount of computation required to obtain
the final output [3], [4], which becomes crucial for efficient DNN
hardware implementations.

To further improve the energy-efficiency of compressed DNN
designs, we adopt monolithic 3D IC (M3D) technology, which has
shown its strength in reducing power consumption by effectively
minimizing wirelength as well as congestion, especially in wire-
dominated circuits. In M3D, transistors are fabricated onto multiple
tiers, and the connections crossing the tiers are established by nano-
scale monolithic inter-tier vias (MIVs) [5]. Owing to the minuscule
size of MIVs (<100nm), M3D achieves orders of magnitude denser
vertical integration with lower RC parasitics compared with through-
silicon vias (TSVs). In so-called gate-level M3D, each standard cell
occupies a single tier—as opposed to being split into multiple tiers—
and MIVs are utilized for inter-cell connections that cross tiers. An
efficient CAD tool flow exists [6], and studies have demonstrated

its performance and power improvements across multiple technology
generations [7].

In this paper, for the first time, we investigate the benefit of M3D
on DNN ASIC implementations and explore architectural and design
decisions that impact its power consumption. We present two DNN
architectures with different granularity of weight compression, and
implement them in both 2D and M3D designs. We also examine two
schemes for memory floorplan in M3D designs, and comprehensively
compare power, performance and area (PPA) benefits. The main
contributions of this paper are as follows: (1) the impact of M3D
on DNN architectures with different granularity in sparsity is investi-
gated, (2) we study the impact of tier partitioning in our M3D designs
to better handle memory blocks, (3) feed-forward classification and
pseudo-training workloads are examined thoroughly to investigate
their impact on power reduction, and (4) we present key guidelines
on optimal architecture and logic/memory design decisions for M3D
ICs.

II. DEEP NEURAL NETWORK FOR SPEECH RECOGNITION

A. Our DNN Topology

Starting from a fully-connected DNN, we adopt a Gaussian
Mixture Model (GMM) for acoustic modeling [8]. Since it has
been shown that DNNs in conjunction with Hidden Markov Models
(HMMs) increase recognition accuracy [9], a HMM is also employed
to model the sequence of phonemes. The most likely sequence is
determined by the HMM utilizing the Viterbi algorithm for decoding.
Then, we adopt the coarse-grain sparsification (CGS) methodology
presented in [4] in our DNN architecture to reduce the memory
footprint as well as the computation for DNN classification.

As shown in Fig. 1, our DNN for speech recognition consists of 4
hidden layers with 1,024 neurons per layer. There are 440 input nodes
corresponding to 11 frames (5 previous, 5 future, and 1 current) with
40 feature-space Maximum Likelihood Linear Regression (fMLLR)
features per frame. The output layer consists of 1,947 probability
estimates, and they are sent to the HMM unit to determine the best
sequence of phoneme using the TIMIT database [10]. The Kaldi
toolkit [11] is utilized for the transcription of the words and sentences
for the particular set of phonemes.

B. DNN Training and Classification

Our DNN is trained with the objective function that minimizes the
cross-entropy error of the outputs of the network, as described in Eq.
(1).

E = −
N∑
i=1

ti · ln(yi), (1)

where N is the size of the output layer, yi is the ith output node, and
ti is the ith target value or label. The mini-batch stochastic gradient

978-1-5090-6023-8/17/$31.00 c©2017 IEEE

4 hidden layers with
1024 neurons per layer

L1
N1

L1
N2

L1
N3

L1
N1024

L2
N1

L2
N2

L2
N3

L2
N1024

L3
N1

L3
N2

L3
N3

L3
N1024

L4
N1

L4
N2

L4
N3

L4
N1024

fMLLR
1

fMLLR
2

fMLLR
440

HMM
1

HMM
2

HMM
3

HMM
4

HMM
1947

1947
HMM
states

440
fMLLR

features

Fig. 1. Diagram of our DNN for speech recognition.

method [12] is used to update the weights. The weight Wij is updated
in the (k + 1)th iteration using Eq. (2).

(Wij)k+1 = (Wij)k + Cij(−lr(∆Wij)k +m(∆Wij)k−1) , (2)

where m is the momentum, lr is the learning rate, and Cij is the
binary connection coefficient between two subsequent neural network
layers for CGS. In CGS, only the weights that correspond to the
location where Cij = 1 are updated. The change in weight for each
iteration is the differential of the cost function with respect to the
weight value:

∆W =
δE

δW
, (3)

such that the loss reduces in each iteration. The training procedure
is performed on a GPU with 32-bit floating point values.

After training, feed-forward computation is performed for classifi-
cation, through matrix-vector multiplication of weight matrices and
neuron vectors in each layer to obtain the output of the final layer.
The Rectified Linear Unit (ReLU) function [13] is used for the non-
linear activation function at the end of each hidden layer.

C. Coarse-Grain Sparsification (CGS)

To efficiently map sparse weight matrices to memory arrays, CGS
methodology [4] is employed. In CGS, connections between two
consecutive layers in a DNN are compressed in a block-wise manner.
An example of block-wise weight compression is demonstrated in
Fig. 2. For a given block size of 16×16, it reduces a 1024×1024
weight matrix to 64×64 weight blocks. With a compression ratio of
87.5%, only eight weight blocks (12.5%) remain non-zero for each
block row, thus allowing for efficient compression of the entire weight
matrix with minimal index.

In order to study the impact of M3D on PPA in different DNN
architectures, the block sizes are swept for the compression ratio
of 87.5%, and the two DNN architectures that have the two lowest
phoneme error rates (PER) for the TIMIT dataset are selected for
hardware implementation. The two architectures chosen are the DNN
with 16×16 block size (DNN CGS-16) and the DNN with 64×64
block size (DNN CGS-64), as shown in Table I.

III. FULL-CHIP MONOLITHIC 3D IC (M3D) DESIGN FLOW

To implement two-tier full-chip M3D designs of the chosen DNN
architectures, we use the state-of-the-art design flow presented in
[6]. The flow starts with scaling width and height of all standard
cells and metal layers by 1/

√
2, so that an overlap-free design can

be implemented in half the footprint of the corresponding 2D design.
The shrunk cells and metal layers are then used to implement a shrunk

1 weight block =
16x16 weights

64x64
weight blocks

12.5% of blocks (8 blocks)
selected in each block row 8

64

64x8 selected
weight blocks

Fig. 2. 1024×1024 weight matrix is divided into 64×64 weight blocks with
each weight block having 16×16 weights (i.e. block size of 16×16). 87.5%
of weight blocks are dropped using coarse-grain sparsification (CGS). The
remaining 12.5% weight blocks are stored in memory.

TABLE I
KEY PARAMETERS OF THE TWO CGS-BASED DNN ARCHITECTURES USED
IN OUR STUDY: BLOCK SIZE OF 16×16 (DNN CGS-16) AND BLOCK SIZE

OF 64×64 (DNN CGS-64).

parameter DNN CGS-16 DNN CGS-64
block size 16×16 64×64

compression rate 87.5% 87.5%
phoneme error rate 19.8% 19.9%

2D design by performing all design stages including placement, pre-
CTS (clock tree synthesis) optimization, CTS, post-CTS optimization,
routing, and post-route optimization in Cadence R© Innovus

TM
. From

this shrunk 2D design, only the cell placement information (x-y
location of cells) is retained, and all other information is discarded.

Next, the cells in the shrunk 2D design are scaled back to their
original size, resulting in overlap between the cells. In order to
remove the overlap, the cells in the shrunk 2D design are partitioned
into two tiers. This is accomplished using an area-balanced min-cut
partitioning algorithm, which enables half of the cells to be placed on
the top tier, and the other half on the bottom tier while minimizing
the number of connections between them. The connections between
the top and bottom tiers utilize MIVs in the final M3D design. After
partitioning, the remaining overlapped cells on both tiers are removed
through legalizing.

In order to determine the location of MIVs, we first duplicate all
metal layers used in the design, so that the original metal layers
represent the metal layers on the bottom tier, and the duplicated
layers represent those on the top tier. Then, we define two flavors
for all standard cells and memory blocks: the bottom tier cells and
the top tier cells. Pins on the bottom tier cells are assigned to the
original metal layers, and those on the top tier cells to the duplicated
metal layers. After mapping all cells and memory blocks onto their
corresponding flavor, the structure is routed in Cadence R© Innovus

TM
.

The locations of vias between the top metal layer of the original stack
and the bottom metal layer of the duplicated stack become MIVs in
the final M3D design.

Once the cell and MIV locations are determined, two designs,
the top and bottom tier designs, are generated, and trial routing
is performed for each tier. Using Synopsys PrimeTime R© and trial-
routed designs for each tier, timing constraints for both tiers are
derived. The timing constrains are used to perform timing-driven
detailed routing for each tier, which results in the final M3D design.

in
p

u
t
n

e
u

ro
n

s

n
e

u
ro

n
 s

e
le

c
t

o
u

tp
u

t
d

e
m

u
x

weight

SRAM

#1

weight

SRAM

#2

weight

SRAM

#6

o
u

tp
u

t
n

e
u

ro
n

sMAC #1

MAC #2

MAC #16

FSM

1
0

2
4

N

1024N

1
2

8
N

1
6

N

1
2

1
2

R
e

L
U

m
a

c
 m

u
x

shift

reg

1024N

12

16W

16W

input frame

Fig. 3. Block diagram of the proposed CGS-based DNN architecture for
speech recognition.

IV. DNN ARCHITECTURE DESCRIPTION

The block diagram of our CGS-based DNN architecture is shown
in Fig. 3. The DNN operates on one layer at a time and consists
of 16 multiply and accumulate (MAC) units that operate in parallel.
The weights of the network are stored in the SRAM banks, while
the input and output neurons are stored in registers. The finite state
machine (FSM) coordinates the data flow such as layer control and
computational resource allocation (i.e. MAC units).

Since the target compression ratio of our architectures is 87.5%,
the neuron select unit chooses 128 neurons (12.5%) among 1,024
input neurons that proceed to the MAC units. This selection-based
computation eliminates unnecessary MAC operations (i.e. MAC
operation of neurons corresponding to zero weights in CGS-based
weight matrix). The neuron select unit is controlled by the binary
connection coefficients discussed in Section II-B, and the coefficients
are stored in the dedicated register file in the FSM unit.

The size of the register file is determined by the block size used
in the DNN architecture. For example, for each hidden layer, eight
weight blocks per each row of 64×64 weight blocks are selected
for MAC operation in the DNN CGS-16 architecture (Fig. 2). Thus,
eight multiplexers are required in the neuron select unit, and each
multiplexer selects one weight block among 64 in a block row, so that
each multiplexer requires six selection bits (=log2 64). Since there are
64 total block rows in the architecture, the total number of bits to
obtain 64×8 selected weight block for a hidden layer is 3,072 bits
(= eight multiplexers × 6 selection bits × 64 block rows). Although
the architecture has four hidden layers, the number of coefficients
for the last hidden layer should be doubled because the number of
neurons in the output layer (1,947 HMM states) is almost 2× of other
layers. Therefore, the size of the coefficient register file in the DNN
CGS-16 is 15,360 bits (= 3,072 bits × 5 effective layers). This value
is calculated in the same way for the DNN CGS-64 architecture,
resulting in 640 bits in total.

On-chip SRAM arrays store the compressed weight parameters
in six banks for the four hidden layers and the output layer (∼2×
parameters). The size of the SRAM bank is determined by the number
of MAC units in the architecture. Since our DNN architectures
operate 16 units in parallel, the row size of each SRAM bank is 128
bits (= 16 MAC units × 8-bit weight precision). Since we assume
8,192 rows for each SRAM bank, the total size of the six SRAM
banks in the DNN is 6Mb (= 6 banks × 128 bits × 8,192 rows).

V. CIRCUIT DESIGN DISCUSSIONS

To analyze the advantage of M3D on different DNN architectures,
two DNN architectures (CGS-16 and CGS-64) are implemented using

TSMC 28nm HPM technology with a target clock frequency of
400MHz, which is the highest achievable frequency of the design.
The footprint of 2D designs are set by targeting the initial standard
cell density (excluding memory block area) before place-and-route
to 65%. The impact of tier partitioning scheme is examined by
comparing two memory floorplan schemes for M3D designs, one
with memory blocks on both tiers (M3D-both), and the other with
memory blocks on a single tier only (M3D-one). In the M3D-both
design, memory blocks are evenly split on the top and bottom tiers
using similar floorplan for both tiers. On the other hand, in the M3D-
one design, all standard cells are placed on one tier, and only memory
blocks exist on the other tier. Fig. 4 shows the GDS layouts of 2D
and M3D designs.

A. Area, Wirelength, and Capacitance Comparisons

Several key metrics of the 2D and M3D designs are presented in
Table II. We summarize our findings as follows:

• Footprint: our M3D-both designs achieve 50.1% footprint re-
duction compared with 2D designs, whereas M3D-one designs
obtain only 33.9% reduction. This difference is attributed to
the large memory area compared with logic: 1.287mm2 vs.
0.505mm2 in the 2D design of CGS-16, for example. These
large memory blocks, if placed in the same tier, cause the
footprint to increase significantly.

• Cell area: we achieve 12.1% cell count reduction, which leads to
14.6% total cell area saving in our M3D-both design for CGS-16
architecture. This saving mainly comes from fewer buffers and
smaller gates needed to close timing in M3D designs compared
with 2D counterparts. Our savings in CGS-64 architecture are
8.2% and 14.3% for the cell count and area, respectively.

• Wirelength: our wirelength saving reaches 29.9% and 33.7% in
CGS-16 and CGS-64, respectively, with our M3D-both designs.
This significant wirelength saving comes from 50% smaller
footprint and shorter distance among cells in M3D designs.

• MIV usage: we use 77K MIVs in our CGS-16 architecture, while
48K MIVs are used in CGS-64. This is mainly because CGS-16
design is more complex than CGS-64 (to be further discussed in
Section VI-A) so that our tier partitioning cutline cuts through
more inter-tier connections in CGS-16. In the M3D-one design,
logic and memory are separated into different tiers. This logic-
memory connectivity is not high in our DNN architecture (=
1.7K).

• Capacitance: In our CGS-16 architecture, the 16.5% pin capac-
itance saving is from cell area reduction, while the 35.0% wire
capacitance saving is from wirelength reduction. By comparing
the raw data (943.3pF vs. 2,216.8pF in the 2D design), we
note that our DNN architecture is wire-dominated. Our pin/wire
capacitance saving reaches 25.0% and 37.7% in CGS-64.

To better understand why M3D-one gives significantly worse
results than M3D-both, we show a placement comparison among
2D, M3D-both, and M3D-one designs in Fig. 5. In the M3D-both
design shown in Fig. 5(b), the logic cells related to memory blocks
in the top tier are placed in the same tier as the memory and densely
packed to reduce wirelength effectively. This is the same for the
bottom tier in the M3D-both design. On the other hand, we see that
logic gates are rather spread out across the top tier in the M3D-one
design shown in Fig. 5(c). This results in 1.1% increase in wirelength
for CGS-16 and 26.7% increase in wirelength for CGS-64 compared
with the 2D counterparts. This highlights the importance of footprint
management and tier partitioning in the presence of large memory
modules in DNN architectures.

(a) (b) (c) (d) (e) (f)

DNN CGS design with 16x16 block size DNN CGS design with 64x64 block size

memory memory memory memory memory memory

logic

logic

logic logic

logic

logic

Fig. 4. 28nm full-chip GDSII layouts of DNN CGS-16 and CGS-64 architectures. (a) 2D IC design, (b) M3D design with memory blocks on both tier
(M3D-both), (c) M3D design with memory blocks on a single tier (M3D-one), (d) 2D IC, (e) M3D-both, (f) M3D-one.

TABLE II
ISO-PERFORMANCE (400MHZ) COMPARISON OF DESIGN METRICS OF 2D AND M3D DESIGNS OF DNN CGS-16 AND DNN CGS-64 ARCHITECTURES.

ALL PERCENTAGE VALUES SHOW THE REDUCTION FROM THEIR 2D COUNTERPARTS.

DNN CGS-16 DNN CGS-64
parameter 2D M3D-both M3D-one 2D M3D-both M3D-one

footprint (um) 1411×1411 1010×984 (-50.1 %) 996×1322 (-33.9 %) 1411×1411 1010×984 (-50.1 %) 996×1322 (-33.9 %)
cell count 298,309 262,084 (-12.1 %) 290,692 (-2.6 %) 163,361 149,921 (-8.2 %) 174,292 (6.7 %)

cell area (mm2) 0.505 0.431 (-14.6 %) 0.511 (1.1 %) 0.314 0.269 (-14.3 %) 0.328 (4.7 %)
mem area (mm2) 1.287 1.287 (0.0 %) 1.287 (0.0 %) 1.287 1.287 (0.0 %) 1.287 (0.0 %)

wirelength (m) 12.089 8.469 (-29.9 %) 12.225 (1.1 %) 5.631 3.734 (-33.7 %) 7.134 (26.7 %)
MIV count - 77,536 1,776 - 48,636 1,776

pin cap (pF) 943.3 788.0 (-16.5 %) 1,004.1 (6.4 %) 520.8 390.8 (-25.0 %) 553.5 (6.3 %)
wire cap (pF) 2,216.8 1,440.8 (-35.0 %) 2,087.4 (-5.8 %) 920.1 573.7 (-37.7 %) 1,110.5 (20.7 %)
total cap (pF) 3,160.1 2,228.7 (-29.5 %) 3,091.6 (-2.2 %) 1,440.9 964.4 (-33.1 %) 1,664.0 (15.5 %)

TABLE III
ISO-PERFORMANCE (400MHZ) POWER COMPARISON OF TWO ARCHITECTURES (CGS-16 VS. CGS-64) USING TWO WORKLOADS (CLASSIFICATION VS.

PSEUDO-TRAINING). ALL PERCENTAGE VALUES SHOW THE REDUCTION FROM THEIR 2D COUNTERPARTS.

DNN CGS-16 DNN CGS-64
workload power breakdown 2D M3D-both M3D-one 2D M3D-both M3D-one

classification

internal power (mW) 91.3 76.7 (-16.0 %) 90.3 (-1.1 %) 86.8 76.1 (-12.3 %) 84.9 (-2.2 %)
switching power (mW) 48.6 31.6 (-35.0 %) 46.5 (-4.3 %) 41.2 30.2 (-26.7 %) 42.8 (3.9 %)
leakage power (mW) 1.3 1.2 (-6.6 %) 1.3 (0.5 %) 1.1 1.1 (-4.7 %) 1.1 (1.5 %)

total power (mW) 141.1 109.6 (-22.3 %) 138.0 (-2.2 %) 129.1 107.3 (-16.9 %) 128.8 (-0.2 %)

pseudo-training

internal power (mW) 150.4 142.8 (-5.1 %) 148.3 (-1.4 %) 129.2 120.0 (-7.2 %) 128.5 (-0.5 %)
switching power (mW) 68.4 57.1 (-16.6 %) 65.6 (-4.2 %) 46.0 36.3 (-21.2 %) 50.3 (9.3 %)
leakage power (mW) 1.3 1.2 (-6.8 %) 1.3 (0.7 %) 1.1 1.1 (-4.6 %) 1.1 (1.4 %)

total power (mW) 220.0 201.0 (-8.6 %) 215.0 (-2.3 %) 176.3 157.4 (-10.7 %) 179.9 (2.0 %)

B. Power Comparisons

Table III presents the iso-performance power comparison between
2D and M3D designs of CGS-based DNNs. We report internal,
switching, and leakage breakdown for each design. Our sign-off
power calculations are conducted using two speech recognition
workloads: classification and pseudo-training (more details provided
in Section VI-B). From examining the power metrics of 2D designs
only, we observe the following:

• CGS-16 vs. CGS-64: during classification, CGS-16 consumes
141.1mW , while CGS-64 consumes 129.1mW . This confirms
that CGS-16 consumes more power to handle more complicated
weight selection process (to be further discussed in Section
VI-A). A similar trend is observed during pseudo-training:
220.0mW vs. 176.3mW .

• Classification vs. pseudo-training: pseudo-training, as expected,
causes more switching in the circuits, and thus more power
consumption compared with classification: 220.0mW vs.

141.1mW for CGS-16. A similar trend is observed for CGS-64:
176.3mW vs. 129.1mW .

Next, we compare 2D vs. M3D power consumption. To explain
the power reduction of M3D designs, Eq. (4) is employed, which
describes the components comprising dynamic power consumption.

Pdyn = PINT + PSW

= αIN · ISC · VDD · fclk
+ αOUT · (Cpin + Cwire) · VDD

2 · fclk
(4)

The first term PINT indicates the internal power consumption of stan-
dard cells and memory blocks. PINT is the product of short-circuit
current (ISC) during input switching, input activity factor αIN , clock
frequency fclk and VDD . The second term PSW represents the
switching power dissipated during the charging or discharging of
output load capacitance of cells (Cpin + Cwire). It is represented
by the product of the output load capacitance, output activity factor
αOUT , fclk and VDD .

(a) (b) (c)

bottom tier bottom tier

top tier

top tier

memory

memory

memorylogic

logic

logic

Fig. 5. Cell placement of the modules in CGS-16 architecture. (a) 2D, (b)
M3D-both, (c) M3D-one. Each module is highlighted with different colors.

μ

M3D-both M3D-one

Fig. 6. Wirelength distribution of CGS-16 architecture.

The resulting footprint of M3D-both designs is reduced by half,
thereby reducing the wirelength between the cells. Fig. 6 shows
the wirelength distribution of the 2D and M3D designs of CGS-16
architecture. The histogram clearly shows that M3D designs contain
more number of short wires and fewer long wires compared with 2D.
The effect of wirelength saving translates to the reduction of wire
capacitance Cwire in Eq. (4), therefore the saving of PSW . Fig. 7
presents the distribution of standard cells with different ranges of cell
drive-strength. We observe that M3D-both design uses more number
of low drive-strength cells (i.e. ×0-×0.8) and fewer high drive-
strength cells (i.e. ×1-×16). Since low drive-strength cells utilize
smaller transistors, their ISC and Cpin are lower, which reduces both
PINT and PSW in Eq. (4).

VI. ARCHITECTURAL IMPACT DISCUSSIONS

A. CGS-16 vs. CGS-64 Architecture Comparisons

Table III shows that the total power reduction of M3D designs is
higher in DNN CGS-16 architecture than CGS-64. This difference
is caused by the granularity of weight selection methodology, i.e.,
coarse-grain sparsification (CGS) algorithm. The 1024×1024 weight
matrix is divided into 256 (= 16×16) weight blocks in CGS-64
architecture. This count becomes 4,096 (= 64×64) weight blocks
in CGS-16. The implication in DNN architecture is that CGS-16
requires a more complex neuron selection unit than CGS-64. Fig. 8
shows the comparison of standard cell area of each module in CGS-16

M3D-both M3D-one

Fig. 7. Cell drive-strength distribution of CGS-16 architecture.

μ

/

Fig. 8. Standard cell area breakdown of 2D CGS-16 and 2D CGS-64 archi-
tectures. Non-dashed and dashed boxes respectively indicates combinational
and sequential elements. Only five largest modules are shown.

and CGS-64 architectures. We show both sequential (dashed box) and
combinational logic (non-dashed box) portion in each module. We
observe that the neuron selection unit in CGS-16 architecture (shown
in purple) occupies more area than that in CGS-64 architecture.

As discussed in Section V-A, M3D designs benefit not only from
wirelength reduction but also from standard cell area saving. The
number of storage elements (i.e. sequential logic and memory blocks)
used in 2D and M3D designs remain the same. Thus, the only possible
power reduction coming from storage elements is their drive strength
reduction. This does not show a huge impact considering the small
portion of sequential elements in our DNN architectures (16.1% on
average). On the other hand, combinational logic can be optimized
in various ways, such as logic reconstructing and buffer reduction.
Therefore, our DNN M3D designs benefit more from combinational
logic gates than sequential elements.

Fig. 9 shows the breakdown of total power consumption into
combinational, register, clock, and memory portions. We see that
combinational power reduction is the dominant factor in total power
saving of M3D designs in both CGS-16 and CGS-64 architectures and
in both classification and pseudo-training workloads. We also observe
that the saving in other parts including register, clock, and memory
power largely remain small. In addition, the neuron selection unit in
CGS-16 architecture consists of a larger number of combinational
logic gates than CGS-64. Thus, its M3D designs have more room for
power optimization, resulting in a larger combinational power saving.

B. Impact of Workloads

In order to investigate the impact of different DNN workloads on
M3D power reduction, we analyzed two main types of speech DNN
workloads: feed-forward classification and training. Real-world test
vectors are used for feed-forward classification. However, since our
current architecture only supports offline training to avoid computa-
tional overhead of finding gradients, we create customized test vectors

M
3

D
-b

o
th

M
3

D
-b

o
th

M
3

D
-b

o
th

M
3

D
-b

o
th

Classification Pseudo Training

Fig. 9. Power breakdown under two architectures (CGS-16 vs. CGS-64), two
workloads (classification vs. pseudo-training), and two designs (2D vs. M3D).

for “pseudo-training”. There are two phases in our pseudo-training
test vectors. In the first phase, the DNN performs feed-forward classi-
fication, which represents feed-forward computation during training.
In the second phase, the DNN conducts feed-forward classification
and writes the weights to memory blocks, which represents backward
computation and weight update. These two phases mimic the behavior
of logic computation and weight update during training.

Table III shows that while M3D-both shows 22.3% (CGS-16) and
16.9% (CGS-64) total power reduction in feed-forward classification
workload, the power saving of pseudo-training workload is only 8.6%
(CGS-16) and 10.7% (CGS-64). This difference stems from different
switching patterns of combinational logic and storage elements in
our DNN architecture. Our DNN mainly uses combinational logic
gates to compute the values of neuron outputs and access memory
for read operations only during feed-forward classification. Thus, this
workload is classified as a compute-intensive kernel. On the other
hand, memory operations are heavily used during pseudo-training
since our DNN architecture needs to read and write weights. This
becomes a memory-intensive kernel. Therefore, switching activity in
memory blocks is much higher during pseudo-training while that
of combinational logic remains largely similar. This explains larger
power consumption during pseudo-training workload: 220.0mW vs.
141.1mW for CGS-16, and 176.3mW vs. 129.1mW for CGS-64 as
shown in Table III.

As shown in Fig. 9, memory power and register power occupy a
large portion of the total power during pseudo-training. This means
that the combinational logic power saving becomes a smaller portion
of the total power saving during training. The opposite is true for
classification, where memory and register power are less dominant.
In this case, the reduction in combinational power saving becomes
more prominent in the total power saving.

VII. OBSERVATIONS AND GUIDELINES

We summarize the lessons learned from this study and provide
design guidelines to maximize the power benefits of M3D designs
targeting DNN architectures as follows.

• M3D effectively reduces the total power consumption of DNN
architectures by reducing wirelength as well as standard cell
area, showing its efficacy on saving power consumption of wire-
dominated DNN circuits.

• If memory blocks occupy a large area in DNN architectures,
wisely tier partitioning memory blocks results in better footprint
saving, which in turn maximize the total power saving.

• M3D shows larger power savings with smaller CGS block
sizes, which consists of more combinational logics, in speech
recognition DNNs. This enables the choice of selecting smaller
block sizes for CGS in hardware implementations, which was
earlier overlooked due to larger power overhead in 2D designs.

• In our DNN, it was combinational logic power, not the com-
monly believed memory power, that dominated the overall
power saving. Moreover, compute-intensive classification work-
load gave us more power saving than memory-intensive training
workload. Such a claim cannot become a general statement, and
other DNN architectures may prove to be the opposite. However,
we believe that the design and analysis methodologies presented
in this paper pave a road for practical and convincing studies
with other DNN architectures and their ASIC implementations.

VIII. CONCLUSIONS

In this paper, we investigate the impact of M3D technology
on power, performance, and area with speech recognition DNN
architectures that exhibit coarse-grain sparsity. Our study shows
that M3D reduces the total power consumption more effectively
with compute-intensive workloads, compared to memory-intensive
workloads. By placing memory blocks evenly on both tiers, M3D
designs reduce the total power consumption up to 22.3%. This
study convincingly demonstrates the low power benefits of M3D on
DNN hardware implementations and offers architectural guidelines
to maximize power saving.

REFERENCES

[1] W. Xiong et al., “The Microsoft 2016 Conversational Speech Recogni-
tion System,” arXiv preprint arXiv:1609.03528, 2016.

[2] V. Sze et al., “Hardware for Machine Learning: Challenges and Oppor-
tunities,” arXiv preprint arXiv:1612.07625, 2016.

[3] S. Han et al., “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding,” in Interna-
tional Conference on Learning Representations (ICLR), 2016.

[4] D. Kadetotad et al., “Efficient Memory Compression in Deep Neural
Networks using Coarse-Grain Sparsification for Speech Applications,”
in Proc. IEEE Int. Conf. on Computer-Aided Design, 2016.

[5] P. Batude et al., “Advances in 3D CMOS Sequential Integration,” in
Proc. IEEE Int. Electron Devices Meeting, 2009, pp. 1–4.

[6] S. A. Panth et al., “Design and CAD Methodologies for Low Power
Gate-level Monolithic 3D ICs,” in Proc. Int. Symp. on Low Power
Electronics and Design, 2014.

[7] K. Chang et al., “Match-making for Monolithic 3D IC: Finding the Right
Technology Node,” in Proc. ACM Design Automation Conf., 2016.

[8] D. Su, X. Wu, and L. Xu, “GMM-HMM Acoustic Model Training
by a Two Level Procedure with Gaussian Components Determined by
Automatic Model Selection,” in Proc. of IEEE Int. Conf. on Acoustics,
Speech and Signal Processing, 2010.

[9] L. Deng, G. Hinton, and B. Kingsbury, “New Types of Deep Neural
Network Learning for Speech Recognition and Related Applications:
An Overview,” in Proc. of IEEE Int. Conf. on Acoustics, Speech and
Signal Processing, 2013.

[10] J. S. Garofolo et al., “DARPA TIMIT Acoustic-Phonetic Continous
Speech Corpus,” NASA STI/Recon Technical Report N, 1993.

[11] D. Povey et al., “The Kaldi Speech Recognition Toolkit,” in Proc.
of IEEE Automatic Speech Recognition and Understanding Workshop,
2011.

[12] W. A. Gardner, “Learning Characteristics of Stochastic-Gradient-Descent
Algorithms: A General Study, Analysis, and Critique,” Signal processing,
vol. 6, 1984.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in Advances in Neural
Information Processing Systems, 2012.

