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Abstract—Monolithic 3-D (M3D) integrated circuits (ICs) are
an emerging technology that offer much higher integration den-
sities than previous 3-D IC approaches. In this paper, we present
a complete netlist-to-layout design flow to design an M3D block,
as well as to integrate 2-D and 3-D blocks into an M3D SoC.
This design flow is based on commercial tools built for 2-D ICs,
and enhanced with our 3-D specific methodologies. We use the
OpenSPARC T2 SoC as a case study, implement it in a 28-nm
fully depleted silicon on insulator foundry process, and demon-
strate that we can achieve up to 12% and 8% power savings for
a single block and SoC, respectively, when compared with their
2-D counterparts implemented using commercial tools.

Index Terms—3-D floorplanning, monolithic 3-D (M3D) IC,
partitioning, placement.

I. INTRODUCTION

AS TECHNOLOGY scaling approaches its limits, 3-D
integrated circuits (3-D ICs) have been proposed as

one solution to the interconnect bottleneck. The conventional
technique of fabricating 3-D ICs is using through-silicon-
vias (TSVs), where two or more layers of devices are fabri-
cated separately, aligned and bonded. However, the relatively
large pitch and parasitics of TSVs limit them to memory-
on-logic or large logic-on-logic designs with relatively small
number of global interconnects [1].

An emerging alternative is monolithic 3-D (M3D) integra-
tion, where the tiers are fabricated sequentially, one on top
of another, and connected together using monolithic intertier
vias (MIVs). Since no die alignment is required, these MIVs
are roughly the same size as local vias [2]. Overall, M3D
offers extremely high integration densities, and the size of
MIVs ensure that they have negligible parasitics.

Full-custom circuits such as SRAM [3] or FPGAs [4] can
be designed in M3D, but they require little changes to CAD
tools and mainly rely on manual effort. With respect to gen-
eral logic, three design styles are possible—transistor-level,
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block-level, and gate-level. Transistor-level integration is the
most fine-grained technique [5], [6], where the pMOS and
nMOS within standard cells are placed on different tiers.
However, this style requires redesign and recharacterization
of the standard cells, and the standard cell footprint does not
reduce by 50% in 3-D due to the mismatch in the pMOS and
nMOS sizes. The next design style is block-level, where 2-D
functional blocks are floorplanned onto different tiers [7]. This
style has the benefit of IP reuse, but does not fully take advan-
tage of the fine-grained nature of MIVs. The last design style
is gate-level [8], where existing standard cells and memory
can be placed on multiple tiers. The advantage of this style is
that existing cells can be reused, has no total area overhead,
and a high integration density to obtain power benefits.

Gate-level M3D is the most attractive option to design a sin-
gle logic dominated block as it offers significant performance
improvements without any area overhead. However, previous
works have only presented M3D results based on academic
engines without timing optimization or a real clock tree [8], or
design flows that are incapable of handling several real world
constraints such as memory [5]. Furthermore, today’s chips
are far more complicated than a single block. If an entire SoC
is to be designed in M3D, certain blocks will benefit from
folding them (e.g., processor), and certain blocks would best
remain 2-D (e.g., cache). No design flow exists that is capable
of handling an M3D SoC implementation with 3-D blocks,
let alone one with a mix of 2-D and 3-D blocks. This paper
provides a design flow that is capable of handling all such real
world constraints, and this paper is the first work to do each
of the following.

1) Provide a high-quality design flow to design a single
block in M3D, including all design and optimization
stages.

2) Demonstrate how preplaced hard macros in a 3-D space
can be handled using commercial 2-D IC tools, and also
provide a technique for 2-D commercial-tool assisted
3-D memory placement.

3) Demonstrate a consistent, proven power benefit for an
M3D IC when compared to a signoff quality 2-D IC
designed using state-of-the-art commercial tools.

4) Present a design flow that is capable of handling 3-D
blocks during physical design.

In addition to these contributions, we study the impact of vari-
ous M3D folding options using the OpenSPARC T2 processor,
and present design guidelines that are general enough to apply
to other SoCs as well.
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Fig. 1. Shrunk-2-D flow for designing a single M3D block.

In the subsequent sections, this paper presents the first
commercial-quality M3D design flow for a single block, fol-
lowed by the first M3D SoC design flow, commercial-quality
or otherwise. Next, experimental results that show the benefit
of these flows, along with detailed case studies about differ-
ent SoC floorplan options are presented. Finally, we discuss
design learnings and guidelines.

II. DESIGNING SINGLE M3D BLOCKS

This section assumes that the footprint of the M3D block
is known, as well as the tier and partition of all its IO pins.
How these are generated in the context of the entire SoC is
described in Section III. Note that this paper assumes only
two tiers, but the flow can easily be extended to more tiers.

Assume that an optimal M3D placer exists that is capable
of handling true 3-D timing optimization, routing, clock tree
synthesis (CTS), etc. Now, take this optimal placement of all
cells (and buffers), and remove the z dimension. Essentially,
(x, y, z) of each cell transforms to (x, y), with cells overlapping.
The idea behind this design flow is to perform this process in
reverse.

1) Trick a commercial 2-D tool to achieve a placement such
that it represents an M3D IC with all the tiers flattened,
i.e., optimal (x, y) with cell overlap.

2) Post-partition this placement (assign z) with minimal
change to the (x, y) location of cells.

3) Insert MIVs and reroute each tier with a commercial
router while minimizing the routing change from 1).

The overall design flow is shown in Fig. 1. Several technol-
ogy files are required to be scaled to handle point 1) above,
which is discussed in Section II-A. Memory macros require
additional steps such as scaling, placement, and flattening,
which will be discussed in Section II-B. Once this is done,
the commercial 2-D engine (Cadence Encounter) can be run
on this “Shrunk-2-D” design. This result is then split into
multiple tiers to obtain a DRC-clean sign-off quality design
as described in Section II-D, and finally timing and power
analysis is performed as described in Section II-E.

A. Technology Scaling

This section assumes a gate-only design, and handling
memory will be introduced in Section II-B. The challenges
that need to be overcome to enable commercial 2-D tools to
design a gate-level M3D IC are as follows.

1) Enable an “overlapped” placement of all gates such that
it represents both tiers of a superimposed M3D IC.

2) Ensure that any routing and extraction performed on this
Shrunk-2-D design, even if it does not use the same

(a) (b) (c)

Fig. 2. Handling manually preplaced memory macros. (a) Isolating memory
pins. (b) Sample preplacement of memory macros. (c) Handling memory
blockages in a Shrunk-2-D footprint.

metal dimensions as the final M3D design, accurately
reflects the final M3D parasitics.

For a two tier design, superimposing the M3D tiers leads to
a 2-D design with half the available placement area. Placing
all the gates into this (using a 2-D tool) can be achieved by
shrinking the area of each standard cell by 50%, or each side
by 1/

√
2 (0.707). The liberty (LIB) timing models of the cells

are left unchanged to capture the actual timing behavior of
these cells in the final M3D design.

To make the routing reflect M3D, we shrink the metal width
and pitch by 0.707. We also need the extracted parasitics to
reflect the full size wires in M3D. In this paper, we simply
reuse the same capacitance tables as 2-D, and the correla-
tion was found to be acceptable (discussed in Section IV-B).
Tuning of the Shrunk-2-D capacitance tables may be required
in future technology generations if this does not hold true.

B. Handling Memory Macros

This section first presents handling manually preplaced
memory macros, and then discusses how the tool can be used
to determine suitable locations for memory in a 3-D space.

1) Manual Preplaced Memory: Handling of preplaced
memory within a commercial 2-D IC framework needs to
overcome the following challenges: 1) memory macros are
preplaced, cannot be moved, and thus cannot be shrunk down;
2) the commercial 2-D IC tool needs to be aware that the
memory induces a placement blockage in its respective tier
only; and 3) the timing model of the memory needs to be
captured during Shrunk-2-D so that timing optimization and
clock tree synthesis is performed accurately. These problems
can be overcome by realizing that any given cell has a logical
component, used for timing optimization, etc, and a physical
component, which prevents overlap, etc. We can solve all three
challenges by isolating these components.

First, we shrink down the footprint of the memory macros to
the minimum size possible (that of a filler cell), while leaving
it pins defined in the original locations. Therefore, the macro
boundary will be smaller than the (x, y) of its pins [Fig. 2(a)].
This separates out the logical components, and we can now
remove the z dimension of the preplaced memory to solve
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(b)(a) (c) (d)

Fig. 3. Automatic memory partitioning. (a) Obtaining an initial memory
placement with overlap. (b) Coloring overlapped memory. (c) Splitting the
memory. (d) Legalizing the memory.

problem 1) above. We can also assign the original memory
timing model to this filler-size cell. The tool sees all the pins,
and a consistent LIB timing model, so this also takes care of
problem 3) above.

Problem 2) is all that remains to be solved. As we have
shrunk down the size of the memory, if we superimpose them,
the tool thinks that either tier can be used for standard cell
placement. To convey accurate whitespace information, we
can use a combination of full and partial placement block-
ages. Consider the example of preplaced memory in Fig. 2(b).
Regions with two memories overlapping can not have cells
placed in either tier, so they can be represented as a full place-
ment blockage. Regions with only one memory present can
have cells in one tier, but not the other, and we use partial
placement blockages to represent this. This allows us to spec-
ify a maximum placement density over a given region. If we
specify a maximum density of half the target density of the
chip, we can achieve our target [Fig. 2(c)].

2) Auto-Placing Memory: To achieve 2-D tool-assisted 3-D
macro placement, the main challenge to overcome is that com-
mercial 2-D tools have no concept of the third dimension in
their in-built engines. An overview of how this 2-D engine
can be leveraged to design M3D ICs is shown in Fig. 3.

We shrink the memory macros by 0.707 on each side, run
through the automatic placement, and expand the memories
back to their original area as shown in Fig. 3(a). This gives
suitable (x, y) locations for each macro. The next step is to
manually color the overlapping memories such that each color
can be placed onto a separate tier to remove any overlap
[Fig. 3(b)]. This is then split into different tiers and legalized
manually as shown in Fig. 3(c) and (d). This gives preplaced
memory locations, similar to Fig. 2(b) that can then be used
to run through the rest of the flow.

C. Shrunk-2-D Place-and-Route Flow

The shrunk technology files and memory related pins and
blockages can now be fed into Cadence encounter. We can then
use this commercial tool to run through all design stages, all
the way through CTS and post-route optimization. The benefit
of doing optimization in such a fashion is that the tool can
see the entire logic path, performing logic transformations as
needed. This is not true for tier-by-tier optimization, where
deriving timing constraints is a challenge, and even then, the
tool cannot see the entire path.

(a) (b) (c) (d)

Fig. 4. Illustration of Shrunk-2-D flow. (a) Memory preplacement. (b) Input
for Shrunk-2-D placement. Hashed areas indicate partial blockages while solid
shaded areas indicated full blockages. (c) Shrunk-2-D result showing reduced
placement density over partial blockages. (d) Post-partitioned result.

D. Obtaining 3-D Design

As the MIV itself is of the size of a local via [2], has
negligible cost, and can be ignored during timing optimization,
we can assume that the shrunk 2-D solution represents the best
true M3D placement solution that has been flattened down to
a single tier by stripping the z dimension. However, to retain
the quality of the Shrunk 2-D design, we need to split the
logic into multiple tiers such that the change in (x, y) location
is minimized. This can be done in a similar fashion to [8]. We
define regular partitioning grids, and perform a global min-cut
while ensuring area balance within each grid. A smaller gird
size ensures less perturbation, but implies more MIVs (as the
min cut is less effective). This could lead to longer routing
detours to find suitable whitespace for MIVs. The sensitivity
of wirelength to bin size is a few percent [8], and a reasonable
tradeoff is obtained for bins with width of 10 − 20 μm.

During this partitioning process, the cells in the clock tree
can be handled separately to ensure minimal skew. One way
of doing this is to first fix all the clock tree cells in one tier,
and then later partition the regular logic. The advantage of this
method is minimal changes from the Shrunk-2-D design, both
in terms of clock buffer placement and clock tree routing.
However, as will be seen in Section III, this is not always
possible. In such cases, clock cells can be partitioned in a
similar fashion to regular logic.

Once the locations of all cells are determined, MIVs need
to be inserted into whitespace locations. This can be done by
tricking a commercial router as in [8]. Essentially, the 2-D
metal stack is duplicated, and the cell pins are moved to dif-
ferent metal layers depending on the tier in which it is placed.
Since commercial routers are capable of routing to pins on
multiple metal layers, this setup is just sent through routing,
and the routing topologies are traced to get the MIV locations.
With these locations, separate verilog and design exchange for-
mat (DEF) files are created for each tier, so that they can be
opened in independent design windows for signoff routing.
Note that for each tier, MIVs appear as ports on a given metal
layer. This entire process is illustrated in Fig. 4.

E. Timing and Power Analysis

Once the MIV locations are determined, each tier is first trial
routed and estimates of parasitics for each tier are dumped.
The netlist for each tier, along with its parasitics is then fed
into Synopsys PrimeTime. In addition, a top-level netlist and
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Fig. 5. Shrunk-2-D flow for designing a full-chip SoC.

parasitic file is created that contains the MIV connectivity
and parasitics. We then perform an initial timing analysis to
derive timing constraints for each tier. With these timing con-
straints, we go back to each tier, and run timing-driven routing.
The real sign-off parasitics for each tier are then fed back
into PrimeTime to get the final timing and statistical power
simulation numbers.

III. DESIGNING M3D SOCS

We have so far discussed how to design a single block
in M3D. However, today’s chips are complex systems, and
involve several blocks, not all of which may benefit from 3-D.
If every single block was 2-D, and the top-level implementa-
tion consisted of just floorplanning, each block could just be
treated as a hard macro, and the methodology of Section II
could directly be applied. However, designing a system with
a mixture of 2-D and 3-D blocks introduces additional com-
plexity that needs to be handled. More specifically, the new
problems that arise while still needing to fit into the existing
commercial 2-D IC framework are as follows.

1) Determine the pin locations of each 2-D and 3-D block
so as to minimize the top-level routed wirelength.

2) Enable the shrunk 2-D flow to recognize 3-D hard
macros and the corresponding intertier timing arcs dur-
ing timing optimization and clock tree synthesis.

3) MIV planning and partitioning need to be modified to
account for 3-D blocks.

4) Perform final tier-by-tier routing using a commercial tool
with real 2-D foundry technology files where a tier can
contain part of a 3-D block.

5) Perform extraction, parasitic back-annotation, and final
timing and power analysis on a design where MIVs exist
both within blocks as well as between them.

We make several assumptions relating to the design of
the full-chip. First, we assume that the chip is floorplanned
manually. Next, we assume that a bottom-up design style is
followed, where timing budgets of each block are predeter-
mined, each block closed separately, and then assembled at
the top-level. Both these assumptions are valid for large SoCs,
where only a handful of blocks are arranged manually at the
top-level, and the timing paths between blocks are just direct
register to register communication.

A. Overall Design Flow

The overall design flow is shown in Fig. 5. The first step
is to decide which blocks are to be implemented in 3-D and
decide on a manual floorplan. Guidelines on how to decide

(a) (b) (c) (d)

Fig. 6. Netlist generation for top-level pin planning. (a) Initial synthe-
sis netlist. (b) Each block replaced with the netlist obtained after initial
Shrunk-2-D. (c) Intrablock MIVs deleted. (d) One-level of hierarchy for each
block removed.

this are presented in Section V. In addition, the tier of all the
block-pins needs to be decided. For a 3-D block, we can fix all
the pins onto a single tier, or divide them onto all tiers. In this
paper, we divide the pins such that the number of interblock
nets is roughly equal on each tier. Note that this step does not
decide the pin locations, only their tier.

Once the pin partitions for each block are known, we assign
an initial random pin location, and go through a rough initial
Shrunk-2-D for each block. This is to facilitate pin planning,
and is explained in more detail in Section III-B. The pin plan-
ning step gives final pin locations, after which each 3-D block
can go through a full Shrunk-2-D flow.

The next step is to extract LIB timing models for all blocks,
which can be done from within Synopsys PrimeTime after
timing the 2-D/3-D blocks. In addition, abstracts of the block
in library exchange format (LEF) are extracted for each tier
of the block separately from Cadence encounter. In addition,
we create a “Flattened LEF” which is explained along with
top-level Shrunk-2-D in Section III-C.

Section III-C also explains the next step in the flowchart,
where the 3-D block is abstracted to look like a 2-D block
in each tier. The output of this is a design that looks like
what we see in Section II. The top-level now sees only a set
of preplaced 2-D blocks and a Shrunk-2-D result correspond-
ing to this. We can then simply reuse the flow developed in
Section II-D to partition the design and route the top-level of
each tier. Timing and power analysis of the entire SoC requires
some special consideration, and is discussed in Section III-D.

B. Pushing Down Block Pin Locations

Given a set of pin partitions, the objective of this step is to
find suitable locations for each pin along the block boundary
such that the top-level wirelength and congestion are mini-
mized. The first step is to generate a top-level netlist reflecting
the pin partitions, and one technique is shown in Fig. 6.

We first start with a synthesis netlist, and a sample netlist
with two blocks to be implemented in 3-D is shown in
Fig. 6(a). The actual block and design names will be explained
in Section IV. For simplicity, let each block have only two
pins—“a” and “b.” After manual pin-partitioning, assume that
pin “a” of both blocks will be assigned to tier 0 and pin “b”
of each block will be assigned to tier 1.

A random pin location for “a” and “b” are chosen, and
each block is made to go through an initial Shrunk-2-D flow.
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This need not include any CTS or timing optimization, as the
only purpose is to obtain an initial 3-D netlist and partition for
each block. The block netlists of Fig. 6(a) are then replaced
with the initial 3-D netlists [Fig. 6(b)]. We then remove all
intrablock 3-D connections [Fig. 6(c)], and then flatten one
level of hierarchy as shown in Fig. 6(d).

From the top-level perspective, we now have a block-level
netlist where each block is 2-D, and the partitions and loca-
tions of each block are known. The locations and connectivity
of the intrablock MIVs are not relevant at the top-level. For
such a block-level system, an iterative method to assign suit-
able block-pin locations was presented in [7]. Essentially, the
block pins are initially assumed to be in the center of each
block, and initial MIV locations for each interblock net is
determined to be the center of its half-perimeter bounding box.
With these MIV locations, separate verilog and DEF files are
created for each tier so that they can be opened in Cadence
Encounter. We can then use Encounter’s internal pin planner
to assign block pin locations based on connectivity to MIVs
and other blocks. These block pin locations are used to drive
the MIV planner of Section II-D to obtain new MIV locations,
and the process is repeated again. The block pin locations con-
verge fairly quickly, within a couple of iterations. These serve
as the final block pin locations for full block Shrunk-2-D.

C. Handling 3-D Blocks During Shrunk-2-D Flow

After each block has gone through its own implementa-
tion, we need to perform top-level Shrunk-2-D to take care
of interblock buffering and CTS. The main difference from
Section II is that we now have a mix of 2-D and 3-D blocks.

After each block is implemented in 3-D (say spc), we
extract LEF abstracts of each tier (spc_0 and spc_1) that
contain the outline and pin locations. This also contains the
block MIV locations (as from the blocks perspective, they are
ports on each tier), and we delete them as they are not rel-
evant to the top-level. The netlist of Fig. 6(d) contains all
the interblock connections, along with only 2-D blocks. If we
were to plug in this netlist along with the block tier LEFs, we
could directly use the flow of Section II. However, there is
one complication—the timing model of the block. Although
spc_0 and spc_1 can be separated physically, they are still log-
ically one block. There are timing arcs from pins on spc_0 to
spc_1 and vice-versa that need to be captured. In addition, the
clock input to the block is on one tier, so there will be a timing
relationship between the pins on the other tier to the clock pin.

We can extract the timing model of the block in LIB format
when we perform 3-D timing analysis using PrimeTime. We
now need to reconcile a logical block that has all the block-
pins, and the physical abstraction, where the pins are divided
between two different LEF files. We do this by creating a
Flattened LEF file for a 3-D block, where the block pins in
both tiers are collapsed into a single tier. This is essentially
stripping the z dimension, where we add all the pins from both
tiers into a single LEF file.

Now, we use the netlist of Fig. 6(a), along with the flat-
tened LEF file to go through the Shrunk-2-D portion of
the flow of Section II. Note that for 3-D blocks, we do not

really need to separate the pins and placement blockage com-
ponent as we did for the memories, and we can directly use
the flattened LEF file without changing its footprint. This is
because no other block can overlap with a 3-D block in a dif-
ferent tier. In contrast, all 2-D blocks go through an identical
process as the memories did in Section II-B.

Once Shrunk-2-D is completed, we still need to go through
the process of partitioning top-level cells, MIV planning, etc.
We can directly leverage all existing scripts developed by
making a simple change to the netlist at this stage. For the
partitioning stage, we swap the netlist of Fig. 6(a) to that of
Fig. 6(d), while feeding it the (x, y) locations of all top-level
cells obtained from Shrunk-2-D. This can be done because
the partitioner does not need timing information. We can then
proceed with MIV planning and tier-by tier routing as usual.

D. Timing and Power Analysis

Timing and power analysis is very similar to Section II-E,
except that a few additional netlisting steps need to be per-
formed. We obtain the parasitics for each block during block-
design, and for the top-level nets during top-level design. We
also can create an intertier SPEF for each block and the top-
level. The actual netlist read into Synopsys PrimeTime is that
of Fig. 6(b), and we just need to ensure that each net gets
correctly annotated. Once this is done, we can proceed with
3-D timing and power analysis.

IV. EXPERIMENTAL RESULTS

We implement all scripts and tools in python, tcl, and
C/C++. Our target benchmark is the core/cache subsystem
of the OpenSPARC T2 SoC [9] implemented in a foundry
28 nm fully depleted silicon on insulator (FDSOI) process.
The MIV diameter is assumed to be 100 nm, with a resis-
tance of 16 �, and a capacitance of 0.1 fF. Each tier in our
design is built using six metal layers, and we assume copper
on both tiers, which corresponds to a mature fabrication pro-
cess. This assumption is reasonably valid as Panth et al. [7]
have demonstrated that performance degradation can be over-
come if one tier is degraded due to a poor fabrication process.
According to [2], if the thickness of the intertier dielectric is
greater than 100 nm, we can ignore intertier coupling, and
hence we ignore such coupling in this paper. Therefore, the
parasitics of a given 3-D net will be the sum of the extracted
parasitics in each tier, plus the MIV parasitics. Since we lack a
memory compiler for this technology, we scale down both the
size and timing/power characteristics from a 130 nm foundry
library. The frequency of the system is 870 MHz, which was
the fastest we could close the entire SoC with the default com-
mercial 2-D flow. All the analysis presented in this section is
iso-performance, where we compare the power consumption
of 2-D and 3-D SoCs.

In the rest of this section, we first present an overview of
the structure of our target benchmark. Next, we correlate the
wirelength, timing, and power results between Shrunk-2-D and
M3D. We then study the benefits of a single block being imple-
mented in 3-D, and finally we compare the benefits of different
approaches to designing an M3D SoC.
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TABLE I
CORRELATION BETWEEN SHRUNK-2-D AND M3D

(a) (b)

Fig. 7. Interblock connections in the OpenSPARC T2 subsystem. The
width of buses are shown. (a) Core/cache subsystem of the OpenSPARC T2
processor. (b) Detailed view of the cache subsystem.

A. Overview of Target Benchmark

A rough overview of the various interblock connections
in the core/cache subsystem of the OpenSPARC T2 SoC
are shown in Fig. 7. It consists of six blocks—the SPARC
core (spc), the cache crossbar (ccx), L2 tag (l2t), L2 bank (l2b),
L2 data (l2d), and the memory controller unit (mcu). In this
paper, we ignore any analog and PHY-layer related blocks.
As can be seen from Fig. 7(a), this system consists of eight
sets of spc and L2 related modules connected to the ccx.
The L2 modules actually come in pairs, as can be seen in
Fig. 7(b). The l2t modules are the only ones that connect to
the ccx, and two l2t modules share a mcu. The l2b and l2d
are heavily interconnected, and each communicate with their
respective l2t. In addition, the mcu communicates with the pair
of l2b modules. Pairs of L2 modules are independent units, and
do not connect to other pairs. This interconnection structure
motivates our floorplan choices in Section IV-D.

B. Correlation Between Shrunk-2-D and M3D

As was mentioned in Section II, we perform several tech-
nology scaling operations, then perform place and route, CTS,
and buffer insertion using these scaled dimensions. However,
we do not change the parasitics tech files, assuming that the
parasitics per-unit length do not change from the unscaled
dimensions. We then simply reuse the placement and buffering
result while converting it to an M3D design. Final extrac-
tion, timing, and power analysis are performed using foundry
provided technology files, and are signoff quality.

Final analysis always reflects the M3D design we have.
However, this does not imply that the buffering and CTS are
optimal. For this to happen, the wirelength, parasitics, timing
and power of Shrunk-2-D, extracted using shrunk dimensions,
should match that of M3D. This is the objective of reusing
the 2-D capacitance tables, but the tool may behave differently.
For example, if Shrunk-2-D predicts 50% lower parasitics than

TABLE II
CLOCK TREE PARTITIONING OPTIONS

M3D, the design will be under-buffered, and the final M3D
design will not meet timing. In contrast, if Shrunk-2-D predicts
50% higher parasitics than M3D, the final M3D design will
still meet timing, but will be overbuffered, and will have higher
power than necessary.

We pick the two logic dominated blocks (spc and ccx)
and tabulate statistics for Shrunk-2-D and M3D in Table I.
First, we note that the M3D wirelength is slightly higher than
Shrunk-2-D, which is to be expected as zero disturbance is
not guaranteed. We observe that Shrunk-2-D sees up to 18%
lower wire capacitance, which translates to up to up to 8%
lower total capacitance. In turn, this translates to up to 5% and
3% additional net power and total power reduction in M3D
compared to Shrunk-2-D.

We also tabulate certain clock related metrics in Table II.
This table includes both clock buffer partitioning options men-
tioned in Section II-D. The row corresponding to the Fixed
Buf. case is where we fix all clock buffers onto one tier and
only partition the flip-flops, and Part. Buf. is the case where
both clock buffers and flip flops are partitioned across tiers.
From this table, we observe that fixing the clock buffers on
one tier gives both lower clock power and skew. Therefore,
we only partition buffers when there is no other choice. For
example, if we are fixing the buffers on tier 0, but there hap-
pens to be a memory cell placed in tier 0 in the same spot,
we move that buffer to tier 1.

Overall, we observe that the correlation is not perfect,
but acceptable pending further study. Since Shrunk-2-D sees
higher parasitics than M3D, our M3D designs are likely
slightly over-buffered, and power savings numbers are a little
pessimistic. Tuning the tech files to obtain perfect correlation
is beyond the scope of this paper.

C. Designing Single M3D Block

We now take each of the blocks in the T2 SoC, and imple-
ment them in M3D using the Shrunk-2-D design flow. The
footprints of each the 2-D blocks come from the full-chip 2-D
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TABLE III
ENCOUNTER 2-D VERSUS M3D POWER FOR EACH BLOCK

floorplan that will be discussed in Section IV-D. The footprints
for the 3-D blocks in this section are obtained by just scal-
ing the width and height of each block by a factor of 0.707.
We categorize the blocks into logic and memory dominated
blocks, and tabulate the various components of 2-D and M3D
power in Table III.

We first divide the power into memory output
nets (memory), clock buffers (Clk Network), internal
power at the clock pin of flops and memory (FF Clk Pin),
power at the output of the flops (FF Out Pin), and the combi-
national power (Comb). The major source of power reduction
is the combinational power, which benefits logic-dominated
blocks more, where we see an average of 21% reduction,
leading to an overall power reduction of 11.8%. However,
memory dominated blocks benefit very little from this, and
we see only an average of 3.6% power reduction.

We also observe that not all components of power reduce
when going from 2-D to M3D. In memory dominated blocks,
the placement of the memory macros and CTS settings plays a
large role in determining the amount of power reduction. The
l2d block contains the cache banks, and the M3D design has a
very different placement of memory macros, which reduces the
optimality of the flip-flop placement, leading to a marginally
larger FF Clk pin and FF out pin power. Our CTS settings
allow large clock buffers driving large fanout and loads, which
implies that comparatively few buffers are present in the net-
work. Even minor changes in the slew of clock nets has a
large impact on the internal power of the clock buffers, and
M3D does not always offer huge benefit under the CTS set-
tings we have chosen. Tuning the CTS settings is possible to
demonstrate greater M3D benefit, but we must be careful to
choose the settings that offer the best 2-D IC result as well.

The second classification of power we make is into cell,
net, and leakage power. The cell power reduction comes from
reduced buffers, and the net power reduction comes from lower
wirelength. Leakage reduction comes primarily from using
more devices with a higher threshold voltage (Vt) to meet the
same target frequency. As expected, we see some cell power
reduction, while the net power reduction is larger (average
of 15.1%) in logic dominated blocks. However, we see enor-
mous amounts of leakage power reduction of 50.7% in logic
dominated and 30.2% in memory dominated blocks. This is
because leakage power has an exponential relationship to Vt. A
low Vt cell has roughly 10× the leakage of a regular Vt cell, so

converting even a few low Vt to regular or high Vt has a large
impact on leakage. However, in this paper, we report power at
full load, i.e., every region of every block is on. Real systems
have a significant amount of dark silicon, which means that
the total power reduction in M3D will go up significantly.

D. Monolithic 3-D SoC Design

We now design the T2 SoC in 2-D, and with three different
M3D floorplan options, as shown in Fig. 8. The 2-D floor-
plan is quite similar to actual silicon. The M3D floorplans
are motivated by the connection structure of Fig. 7. The first
floorplan option is “logic on memory,” where all blocks are
2-D, and floorplaned in 3-D. Here, we keep all logic domi-
nated blocks on one tier, and all memory dominated blocks
on another. The l2t and spc are kept as close to ccx as pos-
sible to minimize top-level interconnect. We place the mcu
module in between the pairs of l2t and l2b modules to mini-
mize wirelength. The second floorplan option (“logic folded”)
is where we fold the logic dominated blocks (spc and ccx),
and floorplan these along with the memory dominated blocks
implemented in 2-D. The floorplan flexibility is reduced, as
a 3-D block uses up silicon in both tiers. Finally, the third
floorplan option is “all folded,” where we simply scale the
location and dimension of all blocks in the 2-D floorplan by
0.707. In terms of ease of floorplanning, this is the easiest, as
we can mimic existing 2-D floorplans, or even utilize existing
2-D floorplanning algorithms and then simply scale the result.
It should also be noted that all floorplan options here have
exactly the same total silicon area.

The overall power reduction for each of the floorplans is
shown in Table IV. From this table, the general trend is that
the more folded blocks we have, the more wirelength reduction
and total power reduction we achieve. As in the block-level
case, M3D power reduction comes primarily from net power
reduction, with a little cell power reduction as well. In addi-
tion, we see huge leakage power savings. Therefore, we see a
8% reduction in the peak power of the chip, and this number
will only go up when actual workloads are considered. We
also use a significant number of MIVs, and the MIV maps for
all floorplan options are shown in Fig. 9.

Although we say that more folded blocks lead to
more power reduction, the reality is design dependent.
Fig. 10(a) shows the percentage of power that each block
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Fig. 8. Full-chip floorplans for 2-D and different M3D options of the OpenSPARC T2 SoC. The footprint for encounter 2-D, logic+memory, logic-folded,
and all-folded layouts are 3.9 × 4 = 15.6 mm2, 2.6 × 3 = 7.8 mm2, 2.6 × 3 = 7.8 mm2, and 2.76 × 2.83 = 7.8 mm2, respectively.

TABLE IV
POWER RESULTS FOR THREE DIFFERENT M3D IMPLEMENTATIONS OF THE OPENSPARC T2 SOC

(a) (b) (c)

Fig. 9. MIV maps for different M3D floorplans of the T2 SoC.
(a) Logic+Memory #MIV = 4205. (b) Logic-Folded #MIV = 712 640.
(c) All-Folded #MIV = 838 360.

consumes with respect to the total power of the 2-D design.
The upper bar represents the hypothetical case where the SoC
consists of only one instance of each block. Here, we observe
that the spc and ccx contribute roughly equal portions of
power, with the l2t and top-level close behind. However, when
we consider that there are eight spc and l2t modules, and only
one ccx and top-level, we see that the total power is now
heavily influenced by what happens to spc and l2t.

Fig. 10(b) shows the power reduction of each block for each
of the three M3D floorplan options. For the logic on memory
floorplan, we see no significant change to the block power
numbers, but huge reduction in the top-level power. However,
as the top-level power is not a significant contributor to the
total power, we do not see much total power savings. Next, for
the logic folded case, we see large power savings for spc, ccx,
and top-level, but this is offset by increased power in l2t. This
is because of changes to the block shape and pin locations.

(a)

(b)

Fig. 10. (a) Percentage of full-chip power that each block consumes in the
T2 SoC. (b) Power reduction % of each block for different floorplans.

Finally, the all folded case has the least top-level power reduc-
tion, but since it is skewed toward spc, l2t, and ccx power,
and all those modules see improvements in power, we see the
largest overall power savings.

V. DESIGN LEARNINGS AND GUIDELINES

This section presents several design guidelines based on the
insight gained in previous sections. We first discuss how to
predict which blocks are expected to show 3-D benefit, and
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then we discuss how to decide on a good M3D SoC floorplan.
First, when designing a single block in M3D, the wirelength
savings over 2-D are fairly consistent irrespective of block
type. However, how this wirelength savings translates to block
power savings depends on several factors. First, blocks with
lesser memory give more benefit. Next, blocks with fewer flops
or heavily wire dominant ones are expected to give more ben-
efit. Finally, if a block is expected to be in rest mode for
a significant portion of the time, we can expect even larger
power savings as leakage power becomes more dominant.

Next, when choosing an M3D SoC floorplan, there are
several factors that need to be considered.

1) Fold blocks that have a higher chance of power reduc-
tion, i.e., logic dominated blocks.

2) Fold those blocks that are instantiated multiple times at
the top level and hence contribute more to total power.

3) Generally, folding more blocks implies lesser top-level
power saving. This tradeoff needs to be evaluated.

4) After floorplanning, it is better to keep the tier with more
whitespace as the tier that will contain the MIV landing
pads. This is because MIVs will land on the top-metal
layer of this tier, and will be routed over blocks, where
routing resources are very limited.

VI. CONCLUSION

In this paper, we have presented an netlist-to-layout design
flow that produces M3D SoCs that show power benefits when
compared to their 2-D counterparts designed with commercial
tools. We have demonstrated that 2-D commercial tools can
be used along with enhancements and scripts to produce M3D
blocks. We have used the Oracle OpenSPARC T2 designed
in a 28 nm FDSOI process as a case study, and used it to
demonstrate the benefits of the proposed approach, and also to
provide several design guidelines that make the results presented
here general enough to be applicable to other designs.

REFERENCES

[1] X. Dong, J. Zhao, and Y. Xie, “Fabrication cost analysis and cost-aware
design space exploration for 3-D ICs,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 29, no. 12, pp. 1959–1972, Dec. 2010.

[2] P. Batude et al., “3-D sequential integration: A key enabling technology
for heterogeneous co-integration of new function with CMOS,” IEEE J.
Emerg. Sel. Topics Circuits Syst., vol. 2, no. 4, pp. 714–722, Dec. 2012.

[3] S.-M. Jung, H. Lim, K. H. Kwak, and K. Kim, “A 500-MHz DDR
high-performance 72-Mb 3-D SRAM fabricated with laser-induced epi-
taxial c-Si growth technology for a stand-alone and embedded memory
application,” IEEE Trans. Electron Devices, vol. 57, no. 2, pp. 474–481,
Feb. 2010.

[4] T. Naito et al., “World’s first monolithic 3-D-FPGA with TFT SRAM
over 90nm 9 layer Cu CMOS,” in Proc. IEEE Int. Symp. VLSI Technol.,
Honolulu, HI, USA, Jun. 2010, pp. 219–220.

[5] S. Bobba et al., “CELONCEL: Effective design technique for 3-D mono-
lithic integration targeting high performance integrated circuits,” in Proc.
Asia South Pac. Design Autom. Conf., Yokohama, Japan, Jan. 2011,
pp. 336–343.

[6] Y.-J. Lee, P. Morrow, and S. K. Lim, “Ultra high density logic
designs using transistor-level monolithic 3-D integration,” in Proc. IEEE
Int. Conf. Comput.-Aided Design, San Jose, CA, USA, Nov. 2012,
pp. 539–546.

[7] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Power-performance study of
block-level monolithic 3-D-ICs considering inter-tier performance vari-
ations,” in Proc. ACM Design Autom. Conf., San Francisco, CA, USA,
2014, pp. 1–6.

[8] S. Panth, K. Samadi, Y. Du, and S. K. Lim, “Placement-driven partition-
ing for congestion mitigation in monolithic 3-D IC designs,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 4, pp. 540–553,
Apr. 2015.

[9] Oracle OpenSPARC T2. Accessed on May 2014. [Online]. Available:
http://www.oracle.com

Shreepad Panth (S’11–M’15) received the B.S.
degree from Anna University, Chennai, India, in
2009, and the M.S. and Ph.D. degrees from the
Georgia Institute of Technology, Atlanta, GA, USA,
in 2011 and 2015, respectively.

He is currently a Design Engineer and a Technical
Staff Member with Altera Corporation, San Jose,
CA, USA. He has authored over 20 publications. His
current research interests include aspects of physical
design for current and next generation 3-D ICs.

Dr. Panth was a recipient of the Best Paper Award
at ATS’12 and IITC’14, and nominations for the Best Paper Award at ISPD’14
and DAC’14.

Kambiz Samadi (S’04–M’12) received the M.Sc.
and Ph.D. degrees from the University of California
at San Diego, San Diego, CA, USA, in 2007 and
2010, respectively.

He joined Qualcomm Research, San Diego, CA,
USA, in 2011, where he is currently a Staff Research
Engineer. He has over 25 publications in refer-
eed journals and conferences. His current research
interests include on-chip interconnection modeling
and optimization for system-level design, 3-D IC
modeling and optimization, very large scale inte-

gration design manufacturing interface, 3-D IC electronic design automation
solutions, and 3-D IC architecture-level design space explorations.

Dr. Samadi was a recipient of the Best Paper Award and nominated for two
best paper for his journals and conferences.

Yang Du (M’96) received the Ph.D. degree from
Columbia University, New York, NY, USA, in 1994.

He held engineering positions with Analog
Devices, Norwood, MA, USA, AMD, Sunnyvale,
CA, USA, Motorola, Schaumburg, IL, USA, and
Qualcomm, San Diego, CA, USA. He is currently a
Director of Engineering with Qualcomm Research,
where he leads a team in advanced nano-technology
and semiconductor research. He has authored over
50 patents/patent publications and numerous confer-
ence/journal papers. His current research interests

include span emerging semiconductor devices, predictive device and circuit
modeling, novel very large scale integration (VLSI) circuits and architecture,
next generation 3-D IC technology and design, 3-D VLSI circuit, architecture
and system integration, design automation, thermal modeling, and thermal
aware design methodologies.

Sung Kyu Lim (S’94–M’00–SM’05) received the
B.S., M.S., and Ph.D. degrees from the University of
California at Los Angeles, Los Angeles, CA, USA,
in 1994, 1997, and 2000, respectively.

He joined the School of Electrical and Computer
Engineering, Georgia Institute of Technology,
Atlanta, GA, USA, in 2001, where he is currently the
Dan Fielder Professor of Electrical and Computer
Engineering. His current research interests include
architecture, circuit design, and physical design
automation for 3-D ICs. His research on 3-D IC

reliability is featured as Research Highlight in the Communication of the
ACM in 2014 and has authored Practical Problems in VLSI Physical Design
Automation (Springer, 2008).

Dr. Lim was a recipient of the Best Paper Award from TECHCON’11,
TECHCON’12, ATS’12, and IITC’14, and also nominated for the Best Paper
Award at ISPD’06, ICCAD’09, CICC’10, DAC’11, DAC’12, ISLPED’12,
and DAC’14. He is an Associate Editor of the IEEE TRANSACTIONS ON

COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS and
the IEEE DESIGN & TEST OF COMPUTERS. He was a member of the Design
International Technology Working Group of the International Technology
Roadmap for Semiconductors.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


