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Abstract—Three dimensional integrated circuits (3D-ICs) are emerging
as a viable solution to the interconnect scaling problem. During early
design space exploration, a large number of possible partitioning solutions
are evaluated w.r.t. performance, area, through-silicon-via (TSV) count,
etc. During this evaluation process, the number of test-TSVs need to be
added to the total TSV count, to prevent unexpected area overhead later
on in the design flow. While a fixed test-TSV count may provide sufficient
guardbanding, in this paper we show that it often overestimates the actual
number of test-TSVs required. Currently, the only way to determine
the pareto-optimial test-TSV count is to sweep the test-TSV constraint,
and repeatedly apply 3D test architecture optimization algorithms. This
process is time consuming, and is too slow to be used in automated
partitioning. In this paper, we present a quick and accurate estimation
of the pareto-optimal number of test-TSVs required for a given partition.
This can be used as an input to the partitioner to quickly estimate the
total number of TSVs used for a given partition, reducing over-design.

I. INTRODUCTION

Today’s integrated circuits are interconnect limited, as intercon-

nects get slower at smaller technology nodes. Three dimensional

integrated circuits (3D-ICs) are emerging as a viable solution to this

problem. Devices are placed in three dimensions, and the vertical

interconnections are achieved using through-silicon vias (TSVs). This

reduces the longest and average interconnect length, and it has been

shown [1] that TSV-based 3D-ICs can achieve lower wirelength and

longest path delay when compared with their 2D counterparts.

TSV-based 3D-ICs are manufactured by fabricating each die sep-

arately, and then stacking them one on top of the other. A 3D-IC

can be tested either before the dies are stacked (pre-bond test), or

after stacking (post-bond test) [2]. Pre-bond test access is provided

by adding large probe-pads for probe needle touchdown [3], or using

probe cards that can probe TSV microbumps directly [4]. Post-bond

test access is provided by the package pins for the entire chip, and

test-TSVs for dies not directly connected to the package substrate [5].

During early design space exploration, a large number of possible

partitioning solutions are evaluated w.r.t. power, performance, area,

TSV count, etc. The TSV count includes the number of signal TSVs,

as well as estimates of TSVs for power delivery, clock, thermal,

and test. The number of test-TSVs depend on the test architecture,

and includes TSVs required for control, as well as those required

to pump data. If test-TSVs are not accounted for during partition

evaluation, downstream design steps may have insufficient area to

add these TSVs. One such example is shown in Figure 1, where

floorplanning was carried out considering only signal TSV count.

Insufficient area remains to add other TSVs such as clock, power

and test. The only solution is to expand die area, which increases

cost, and reduces yield.

The number of test-TSVs required can be budgeted as a large

fixed number, but this introduces the possibility of a very high

guardband, which could degrade solution quality. A better approach

is to accurately determine the exact number of test-TSVs required
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Fig. 1. (a) GDSII screen shot of a single die of a block-level 3D-IC (b)
Zoom in shot of the boxed TSV block in (a)

for a given partition. Existing work only focusses on determining the

test time given a fixed test-pin and test-TSV constraint, so we would

need to sweep the test-TSV constraint, and repeatedly apply these

algorithms to find the pareto-optimial test-TSV count. While this

process works if the partition is fixed, it is too slow to be used during

early design space exploration. In this paper, we derive a fast and

accurate estimate of the pareto-optimal number of test-TSVs required

for a given 3D partition. This estimate can be fed into automated 3D-

IC partitioning tools, to most accurately estimate the total TSV count

of a given partition.

II. PRELIMINARIES

A. Prior Work

Challenges facing 3D test were enumerated in [6], and the first

pre-bond test architecture was presented in [3]. This architecture is

similar to IEEE 1500, and a pre-bond testable architecture based on

extensions to IEEE 1500 was formalized in [2], [5].

Algorithms to construct 3D scan chains were presented in [7],

but this architecture is not pre-bond testable. Pre-bond testable clock

trees were presented in [8]. There has also been been prior work

on designing wrappers for 3D-ICs, assuming different test access

mechanism (TAM) width for pre-bond and post-bond test [9].

Test architecture optimization for 3D-ICs was presented in [10].

The authors formulated an ILP problem that performs test scheduling

for a 3D-IC given a fixed test-pin and test-TSV constraint. While this

algorithm can be repeatedly applied to determine the pareto-optimal

test-TSV count for a given partition, it is too slow to be used to

evaluate millions of possible solutions. To the best of our knowledge,

there is no prior work on quickly estimating the number of pareto-

optimal test-TSVs.

B. Motivation

As mentioned in Section I, the total TSV count of a given partition

needs to include accurate estimates of the test-TSV count. The chosen

test architecture determines the number of control test-TSVs, while
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the number of TSVs required to pump data are variable, and left up

to the design engineer. Only the latter is of interest in this paper, as

the former remains constant irrespective of partition. In the remainder

of this paper, test-TSVs refer only to those TSVs used to carry test

vectors and responses, and control test-TSVs can be treated as a

separate, fixed constant.

If a fixed number of test-TSVs (TSVt,f ) are allocated during

partitioning, there is the possibility of overestimating the real total

TSV count of a partition. It has been shown [11] that pareto-

optimality exists in the test-TSV count. If TSVt,po is the pareto-

optimal number of test-TSVs, any TSVs allocated beyond this will

not yield a reduction in test time. The actual number of test-TSVs

used during scheduling is given by

TSVt = min(TSVt,f , TSVt,po) (1)

In area critical designs, when TSVt,f is small, it is usually the

smaller of the two, so it serves as a reasonable estimate. However,

if TSVt,f is large, and it was used as an estimate for TSVt, several

candidate solutions would be discarded for having too many TSVs.

Therefore, an accurate estimate of TSVt,po is required, and it needs

to be quickly computed to be incorporated into automatic partitioning.

We focus on block-level 3D-ICs in this work, as they will be the

first 3D-ICs to appear [12]. Only post-bond test is considered, as the

pre-bond test time is influenced by factors other than test-TSV count,

such as probe pad count etc. The ILP-based test scheduling algorithm

presented in [10] is used to compute test time. Since the test time

estimate is meant to be used during design space exploration, top-

level interconnect tests are ignored, and all blocks are assumed to be

soft i.e., the number of scan chains are yet to be decided.

III. DIE-LEVEL PARTITIONING

We first study die-level partitioning, where different partitions

have different orders in which the dies are stacked. While the

solution space is small, and exhaustive search methods can easily

be applied, we use insights gained in this section to explain block-

level partitioning in Section IV.

A. Two-die stack

A two tier die-level stack is the simplest form of 3D-IC, and

there are only two partitions possible. Furthermore, only two test

scheduling options exist, serial or parallel test. In serial test, each die

is tested one at a time, the bottom die with all the test-pins, and the

top die with all the test-TSVs. In parallel test, the test-pins are divided

between the bottom and the top die. We consider the three circuits

shown in Figure 2. The first circuit is a homogeneous stack, and the

next two are different die-level partitions of a heterogeneous stack.

Each die is a circuit taken from the ITC’02 SOC benchmarks [13].

Since the solution space is small, we try all possible test scheduling

options, and tabulate the pareto-optimal TSV count for both serial

and parallel test in Table I. We assume 50 test-pins, and sweep the

test-TSV count to obtain the minimum test time and TSVt,po. The

parallel schedule offers lower test time, and would be chosen by

any test scheduling algorithm. For the homogeneous stack, an equal

division of test-pins is optimal, which implies that TSVt,po is half of

the number of test-pins, or 25. For the heterogeneous stack however,

we observe that both partitioning options give the same minimum

test time, but TSVt,po is different. As expected, the partition with the

more complex die on top requires more test-TSVs to obtain minimum

test time.

Fig. 2. Three different circuits considered for die-level partitioning of a
two-die stack. (a) A homogeneous stack, (b & c) Two different partitions of
a heterogeneous stack. A larger number implies the die is more complex.

TABLE I
THE OPTIMAL TEST TIMES (IN CYCLES) ACHIEVED FOR A TWO-DIE

CIRCUIT, ALONG WITH THE TSV USAGE AT WHICH THIS OPTIMUM TIME IS

REACHED.

Circuit
Serial Test Parallel Test

Tmin TSVt,po Tmin TSVt,po

ckt1 2,447,767 47 2,363,730 25
ckt2 p1 1,931,750 47 1,899,170 19
ckt2 p2 1,940,656 47 1,899,170 31

B. Multi-die stack

The approach taken in this section is to tabulate the test time for

a given set of partitions under fixed test-pin and TSV constraints,

and then use this information to identify what characteristics of the

partition affect the test time. We consider the three and four die

stacks shown in Figure 3. TSV constraints can be assigned in two

ways. The first method is uniform TSV constraints, which allocates

an equal TSV budget to all the dies. The second method is tapering
TSV constraints, which allocates more TSVs for the lower dies (=

closer to the package), and less TSVs for the upper dies. The test

time is computed using ILP-based scheduling. We study the test time

difference for both types of constraints, and tabulate them for three

and four dies in Tables II and III, respectively.

It is clear from these tables that, as expected, the test time of a

partition with the most complex dies closest to the package is least.

However, if we have uniform TSV constraints, the test time changes

only when the bottom die changes. Any permutation of the upper

dies without changing the bottom die does not affect the test time.

Furthermore, if the pin and TSV constraints are equal, partitioning

has no impact on the test time. If two partitions have the same test

time when tested with the same number of TSVs, it follows that they

both also have the same TSVt,po. What this implies is that, during

the partitioning process, we only need to update TSVt,po when the

complexity of the bottom die changes. Its value is computed in the

next section, using lower bounds.

These results are not restricted to our simulation settings, and it

is possible to formally prove them. A formal proof is provided in

Appendix Section A.

IV. BLOCK-LEVEL PARTITIONING

Block-level partitioning is the more general case of die-level par-

titioning. We study how the test time changes for different partitions

under fixed test-TSV constraints, derive lower bounds on the test

time, and use this lower bound to derive equations for TSVt,po. As

in the previous section, we start with the two die case, and extend the

results to multiple dies. In this section, we assume uniform test-TSV

constraints.

A. Two-die stack

We start with ckt2 p2 and start moving modules across the tiers.

Each move results in a new partition. Two types of module moves

are performed. The first is moving a module from one die to another,



Fig. 3. Circuits considered for die-level partitioning of multi-die stacks. (a
- c) three die stack, (d - f) four die stack. A larger number implies the die is
more complex.

TABLE II
THE TEST TIMES FOR DIE-LEVEL PARTITIONING OF A THREE-DIE 3D-IC,

CONSIDERING BOTH UNIFORM AND TAPERED TSV CONSTRAINTS.

Pmax
TSVmax Test time (cycles)

D2-D1 D3-D2 ckt3 p1 ckt3 p2 ckt3 p3

50
50 50 2,197,060 2,197,060 2,197,060
30 30 2,252,535 3,138,753 3,138,753
30 10 2,252,535 3,826,504 7,021,398

70
70 70 1,541,308 1,541,308 1,541,308
30 30 1,753,753 3,138,753 3,138,753
30 10 2,249,017 3,826,504 7,021,398

and the other is swapping two modules from different dies. A total

of 1000 such moves are performed, and for each partition, ILP-

based test scheduling is performed with 50 test-pins and two different

TSV constraints. The results are plotted in Figure 4. As observed in

the previous sections, if the test-TSV constraint is high enough, all

partitions have similar test time. With lower test-TSV constraints (=

20), we observe that a significant number of partitions have much

higher test time, indicating that their TSVt,po is higher. There are also

partitions however (Moves 650-800), that have close to the minimum

test time, indicating that their TSVt,po is close to 20. We next derive

lower bounds, and identify what attributes of the partition determine

TSVt,po.

1) Lower bound on test time: For a module m, let im, om, and bm
be the number of input, output, and bi-directional ports, respectively.

Further, let pm be the number of patterns required to test that module.

Let fm be the number of flip flops in that module. In the case of

hard modules, fm is simply the sum of the lengths of the internal

scan chains. The number of stimulus (tsm) bits is the sum of im,

bm, and fm, and response bits (trm) of m is the sum of om, bm,

and fm. We then define the complexity of a module m as

cm = max(tsm, trm) · pm+min(tsm, trm) (2)

Note that this is simply the test data volume of that particular

module, neglecting the one cycle required to run the test. Given a set

of modules M , the complexity of that set CM is defined as the sum

of the complexities of all its constituent modules i.e.,
∑

m∈M cm.

Although similar to the ITC’02 [13] definition of complexity, our

formulation is linear. This implies that irrespective of any partition

of the modules M into M1 and M2, the sum of CM1 and CM2 will

always result in CM .

Given a set of modules M and P pins with which to test them, a

lower bound on the test time of a 2D design based on the amount of

data that needs to be pumped into it was given by [14], and can be

TABLE III
THE TEST TIMES FOR DIE-LEVEL PARTITIONING OF A FOUR-DIE 3D-IC,

CONSIDERING BOTH UNIFORM AND TAPERED TSV CONSTRAINTS.

Pmax
TSVmax Test time (cycles)

D2-D1 D3-D2 D4-D3 ckt4 p1 ckt4 p2 ckt4 p3

50
50 50 50 2,225,765 2,225,765 2,225,765
30 30 30 2,300,851 2,597,776 2,597,776
30 20 10 2,418,438 2,971,786 7,021,398

70
70 70 70 1,561,751 1,561,751 1,561,751
30 30 30 1,802,068 2,597,776 2,597,776
30 20 10 1,919,655 2,971,786 7,021,398

Fig. 4. The variation in test time observed for a two-die stack starting with
ckt2 p2 and performing 1000 different random moves. We assume 50 test-
pins and 2 different test-TSV constraints.

re-written as:

LB2D(M,P ) =

⌈ |M|∑
m=1

cm
�P/2� −

|M|∑
m=1

min(trm, tsm+1)

�P/2�

⌉
+
|M|
min
m=1

pm

(3)

Let M3D be the set of all modules in our 3D stack. M1 is the

set of modules in the bottom die, and M2 the set of modules in the

top die. Let LBMi denote the lower bound of the test time of the

set of modules Mi. First, we consider lower bounds induced by both

the TSV and pin constraints. We assume that TSVmax <= Pmax,

as any additional TSVs will simply be wasted. The maximum test-

pins available to the bottom and top dies are Pmax and TSVmax,

respectively. Therefore, a partition-dependant lower bound is given

by

LBdep = max{LB2D(M1, Pmax), LB2D(M2, TSVmax)} (4)

This lower bound can be improved by considering that every module

in the 3D stack can be tested with no more than Pmax pins. Such a

lower bound is partition independent, and is given by

LBindep = LB2D(M3D, Pmax) (5)

This lower bound holds irrespective of the partition or the TSV

count. The overall lower bound is then given by the maximum of

the partition independent and dependent lower bounds, and it can be

reduced to

LB3D = max{LB2D(M3D, Pmax), LB2D(M2, TSVmax)} (6)

Once our lower bound is defined, we want to see how this changes

with the partition. We first need a metric that captures partition

information. We define a complexity factor (CF ) for a two-die stack

as,

CF =
CM1

CM1 + CM2

= 1− CM2

CM1 + CM2

(7)



By varying CF from 0 to 1, we cover all types of partitions. A

CF of 0 means that all modules are in the top die, and a CF of

1 means that all modules are in the bottom die. We now see how

the lower bound varies with the CF . It can be shown that the first

term in Equation (6) is greater than the second term for low CF ,

and reduces with increasing CF until a certain threshold value is

reached. Beyond this, the second term becomes greater, and since it

is a constant, the lower bound is also a constant1.

To calculate the value of this threshold, we develop a linear

approximation of Equation (6). We make the assumption that the

scan unload and scan load of successive modules are not overlapped.

We also neglect the third term in Equation (3), as it is small when

compared with the first. Then, we have:

LB′2D(M,P ) ≈ 2 · CM/P (8)

The lower bound then becomes

LB′3D = 2 ·max
(
CM3D

Pmax
,

CM2

TSVmax

)
(9)

The threshold complexity ratio is the complexity ratio when both

terms are equal, and beyond which test time does not change. It is

given by

CFth = 1− TSVmax

Pmax
(10)

Note that this threshold value only depends on the TSV and pin

constraints and not on the actual design or partition.

With these simplifications, the approximate lower bound on the 3D

test time can be written as

LB′3D = 2CM3D ×
{
(1− CF )/TSVmax 0 ≤ CF ≤ CFth

1/Pmax CFth ≤ CF ≤ 1
(11)

This gives us a linear model for the lower bound, with both design

dependant and independent terms. The shape of the lower bound

curve is independent of design and is shifted up and down depending

on the overall design. What this linear model gives us is a way to

predict what the lower bounds on the test time will be, without having

any real partition information. The converse of Equation (10) can be

used to find out the pareto optimal number of TSVs for a given

partition. Given a partition P with complexity factor CFP , TSVt,po

can be given by

TSVt,po = Pmax × (1− CFP ) (12)

This equation essentially finds the TSV count for which this

partition is at the threshold complexity factor. Increasing the TSV

count beyond this value implies that the first term in Equation (9) is

greater than the second term, and since it is a constant, the test time

does not reduce. This is the definition of TSVt,po.

2) Test time versus lower bound: In this section, we plot the test

time versus the CF , and see how different partitions affect the test

time. In addition, we plot the approximate lower bound on the same

scale to see how the test time curve compares to the lower bound

curve, as shown in Figure 5. As expected, the test time curve follows

the general shape of the lower bound, but is shifted upwards by some

amount. Most importantly, the threshold complexity factor CFth for

both the test time and the lower bounds is similar. Therefore, the

lower bound gives the designer a very good estimate of what the

shape of the test time curve is. Therefore, TSVt,po is well estimated

by Equation (12).

1A formal proof is provided in Appendix Section B.

Fig. 5. Comparison between the measured test time and approximate lower
bound of test time (= Equation 11) for a 2 die stack. We assume 50 test-pins
and 4 different TSV constraints.

Fig. 6. Variation in test time observed while performing 1000 random moves,
starting with ckt3 p1. The test time is computed assuming 50 test-pins, and
under 2 different uniform TSV constraints (20 vs 50 per-die).

B. Multi-die stack

Similar to the experiment done with two dies, we use ckt3 p1 as

our initial design. Then, we make 1000 random moves and observe

the variation in test time. We focus on specific kinds of moves. The

first one 1/3 moves are performed only between Die 1 and Die 2.

The next 1/3 are only between Die 1 and Die 3. The third and final

1/3 is made between Die 2 and Die 3. The test time is computed

using ILP with a test-pin constraint of 50 and 2 different uniform

TSV constraints. The results obtained are plotted in Figure 6.

From these results, we again see that if sufficient TSVs are

available, the test time does not vary much, indicating that all

partitions have at least TSVt,po TSVs. If, however, we do not have

sufficient TSVs, there is significant variation in the test time. Most

interestingly however, similar to the die-level partitioning, moves

between the upper dies do not change the test time. These results

are explained on the basis of lower bounds on test time, as described

next.

1) Lower bound on test time: In this section, we generalize the

results obtained for the two-tier case. We start at the top die and

calculate its lower bound. Next, we calculate the lower bound on the

top two dies similar to the two die case. This procedure is repeated

one die at a time until we reach the bottom die. Then, this lower

bound is linearized similar to the procedure followed for the two die



Fig. 7. Comparison between the measured test time and approximate lower
bound for a four-die stack. We assume 100 test-pins and 4 different uniform
TSV constraints.

case. If D denotes the set of all dies, we obtain2:

LB′3D = max

{
|D|
max
i=2

2 ·∑|D|
j=i

CMi

TSVmax,i
,
2 · CM3D

Pmax

}
(13)

This equation is general and applies to both tapered and uniform

TSV constraints. Assuming uniform TSV constraints, say TSVmax,

we get

LB′3D,eq = max

{
2 ·∑|D|

j=2
CMi

TSVmax
,
2 · CM3D

Pmax

}
(14)

This shows that the lower bound is independent of the partition of

the upper dies. For uniform TSV constraints, we define a complexity

factor

CF =
CM1

CM3D

= 1−
∑|D|

j=2
CMi

TSVmax
(15)

Note that this CF has a slightly different meaning from that of the

two-die case. Here, if CF = 1, then all modules are in the bottom

die as usual, but a CF of 0 simply means that no modules exist in

the bottom die. Using this definition, we get identical definitions of

the threshold complexity factor CFth, and TSVt,po as the two-die

case.

2) Test time versus lower bound : Here we plot the test time vs CF

for a four-die circuit using ckt4 p1, and performing 1000 different

moves. The test-pin constraint is assumed to be 100, and we assume a

uniform TSV constraint. We deliberately choose TSV numbers such

that the TSV-to-pin ratio is the same as that of the two-die case.

This would imply that the shape of the approximate lower bounds

is exactly the same but with a different magnitude. The purpose of

this is to demonstrate that different circuits tested under the same

TSV-to-pin ratio indeed have similar test time curves. This is plotted

in Figure 7. As observed from this figure, the slope of the test time

curve as well as the threshold complexity values are dependent only

on the TSV and pin constraints, and not on the circuit being tested.

This implies that Equation (12) gives us a good estimate of TSVt,po,

even for more than two tiers.

V. CASE STUDIES

In this section, we pick benchmark circuits from the IWLS’05

benchmark suite, and observe how the developed theory applies to it.

We choose two circuits, the details of which are given in Table IV.

ATPG for each module is performed using Synopsys Tetramax, and

2A detailed derivation is provided in Appendix Section C.

Fig. 8. Comparison of the variation in test time observed between moves
involving the bottom die (= D1 moves), and all other moves. The numbers
are reported for four-die implementations of (a,b) b19, (c,d) des perf.

Fig. 9. Comparison of theoretical and experimental threshold complexity
factors under various TSV and pin constraints. (a,b) Two-die stack, (c,d) Four-
die stack.

this table lists the average and standard deviation of test data volume

(TDV) among all modules. We also assume uniform TSV constraints

in all experiments involving more than two dies.

A. Test time variation

In this experiment, we wish to confirm that different partitions

with the same bottom die have similar test time. This will justify our

definition of complexity factor, which in turn translates to a more

accurate TSVt,po. We start with four die implementations of the two

benchmarks, and first perform 500 moves that change the complexity



Fig. 10. The variation in TSVt,po observed while performing 1000 different
random moves, assuming 50 test-pins. (a) b19 two-dies, (b) b19 four-dies, (c)
des perf two-dies and (d) des perf four-dies.

TABLE IV
DETAILS OF BENCHMARK CIRCUITS USED, SHOWING THE AVERAGE AND

STANDARD DEVIATION OF THE TEST DATA VOLUME AMONG ALL

MODULES.

Circuit #Modules Average TDV Std.Dev TDV
b19 57 141,489 168,833

des perf 51 18,820 18,857

of the bottom die. Next, we make an additional 500 moves that change

the complexity of the upper dies but maintain the bottom die constant.

We plot the variation observed for each type of move in Figure

8. The variation is computed as (tmax − tmin)/tmin, where tmax

and tmin are the maximum and minimum test times respectively.

We observe that moves involving the bottom die have significantly

higher variation when compared with moves that do not, confirming

our assumption. We also observe that if the test-TSV constraint is

increased, the variation in the moves involving the bottom die is

decreased. This is because with increased test-TSV constraints, a

greater fraction of all possible partitions already meet TSVt,po.

B. Threshold complexity factor prediction

The correct prediction of CFth is important, as it directly translates

in to the correct prediction of TSVt,po. Theoretically, it is computed

by Equation (10). According to this equation, CFth is independent

of design and only depends on the ratio between TSV and pin

constraints. We want to see how this holds up in practice.

The experimental CFth is computed as follows. We consider one

thousand partitions of a design, and compute the CF and test time of

each one. We create bins with respect to CF , with a bin size of 0.005.

For each bin, we compute the average test time of all the partitions

(using ILP) that lie within that bin. The threshold CF is computed

as the first bin for which the test time is within 10% of the minimum

test time observed for that particular pin and TSV constraint.

We plot the theoretical and experimental results observed in

Figure 9. We consider different TSV and pin constraints that lead to

the same CFth. We also plot this for two and four die implantations

of both designs. From this figure, we see that the theoretical formula

does indeed give results close to the experimentally observed ones,

which means that we can quickly and accurately estimate CFth, and

equivalently TSVt,po.

C. Over-design reduction

In this section, we compute TSVt,po during a simulated partition-

ing process, and observe how it varies. The partitioning process is

simulated by taking an initial circuit, and performing 1000 different

random moves on it. The results are plotted assuming 50 test-pins in

Figure 10. From this figure, we observe that if we use a fixed TSV

constraint, that there is the possibility of over-design depending on

what that constraint is. If it is quite low (e.g., 10), then the TSVt,po

is always greater than this, and no resources are wasted. If however

the fixed TSV constraint is high (e.g., 40), then the actual number of

TSVs required can be much lesser than this, and correct prediction

of TSVt,po helps eliminate resource wastage. We also observe that

increasing the number of tiers increases TSVt,po. This is expected,

as more tiers require more TSVs to test them with minimum test

time.

VI. CONCLUSION

In this paper, we have demonstrated the impact of both partitioning,

and the number of TSVs on test time. Results show that different

partitions of the same design can obtain comparable test time, if

the test-TSV budget is varied accordingly. We have also derived the

lower bounds on the test time of a 3D-IC, and used it to find out the

pareto-optimal test-TSV count (TSVt,po) for a given partition. For

the multi-tier case with uniform TSV constraints, we have shown that

this number is primarily determined by the complexity of the bottom

tier, and moving modules between the upper tiers have little impact.

Finally, we have validated our predictions, and shown that significant

room for over-design reduction exists.
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APPENDIX

We provide detailed derivations and proofs of some of the equa-

tions and theorems presented in this paper. The terminology used

in this section is as follows. M3D is the set of all modules in the

design. D is the set of all dies, and our design is partitioned into dies

D1, . . . , D|D|. The modules allocated to die Di is Mi. The test pin

constraint is Pmax, and the maximum number of test TSVs allowed

between Di and Di−1 is TSVmax,i (either dedicated or multiplexed).

LB2D(M,P ) is the lower bound on test time of the set of modules

M , with P pins, and is given by Equation (3).

A. Proof of Claim in Section III-B

In this section, we formally prove that for die-level partitioning

under uniform TSV constraints, the partition of the upper dies does

not affect test time.

Lemma 1: Assume that TSVmax is a uniform TSV constraint to

test the set of dies D. Let Dp ⊆ D be a subset of the dies tested in

parallel within a single test session. Let pd = (p1, · · · , p|Dp|) be a

division of pins within this test session. If we swap two dies Di and

Dj , i �= j �= 1 within the die stack , then p′d obtained from pd by

swapping pi and pj does not violate Pmax and TSVmax constraints.

Proof: The number of TSVs in die k (TSVk) satisfies

TSVk =
|D|
max
l=k

|D|∑
m=l

pm ≤ TSVmax ∀k > 1 (16)

Since the set of dies D is known to be tested with pd, we know

that Equation (16) is satisfied. We need to prove that is also satisfied

if D′ is tested with p′d. Clearly, the greatest term in Equation (16)

occurs when k = 2, or at the die immediately above the bottom die.

Therefore
∑|D|

m=2
pm satisfies the TSVmax constraint. If D′ is tested

with p′d, this sum does not change, and therefore p′d also satisfies the

TSVmax constraint.

This lemma proves that if two dies are tested in parallel, and then

interchanged in the stack, they can still be tested in parallel with the

same division of pins. It does not claim that the same old division of

pins will be optimal for the new partitioning, just that it is possible

without violating TSV and pin constraints.

Lemma 2: If the set of dies D is tested with a certain test schedule

(with uniform TSVmax constraints), then any different partition D′

with the same bottom die D1, can be tested with the same test

schedule.

Proof: A test schedule is merely a series of test sessions with

dies tested in parallel within the same test session. Since TSVs are

multiplexed between two different sessions, it is enough to show

that a single test session can be repeated for D′. From the previous

lemma, the test session can be repeated for a different partition with

two dies interchanged. It is clear that D′ can be obtained from D
with a series of two die exchanges. Therefore D′ can also be tested

with the same test schedule.

Again, this lemma does not claim that the same test schedule is

optimal for the new partition, but simply that it is possible. Finally,

we prove that the test time is independent of the partition of upper

dies.

Theorem 1: All partitions of a set of dies D with same bottom die

D1 have the same test time under a uniform TSVmax constraint.

Proof: Let Dall be the set of all partitions of D with the same

bottom die D1. Using identical TSVmax constraints, find the partition

with the minimum test time, say Dmin. Then, from the previous

lemma, any other partition D′ ∈ Dall can be tested with the same

test schedule as Dmin, and hence also has minimum test time.

Tables II and III also show that if the number of test pins is equal to

the number of test TSVs, then all partitioning results have the same

test time. The proof of this follows from the fact that if Pmax =
TSVmax, lemma 1 holds for interchanging any two dies including

the bottom die.

B. Proof of Claim in Section IV-A

For a block-level two-tier design, we assumed that there exists a

threshold complexity factor, above which the test time is constant.

We justify this assumption by the following proof

Theorem 2: LB2D(M2, TSVmax) decreases with increasing CF ,

and intersects LBindep for all values of TSVmax < Pmax.

Proof: The first statement is trivial. If CF increases, it im-

plies that CM2 reduces, and this will reduce the lower bound on

M2. Next, when CF = 0, all the modules are in Die 2, Mtop

becomes M3D . Since TSVmax < Pmax, LB2D(M3D, TSVmax) >
LB2D(M3D, Pmax). When CF = 1, the top die is empty with lower

bound zero, and therefore, LB2D(Mtop, TSVmax) < LBindep. This

shows that somewhere in between a CF of 0 and 1, they intersect.

C. Derivation of Equation (13)

We start at the top die and work our way downwards. For the

top-most die, the lower bound on test time can be written as

LBM|D| = LB2D(M|D|, TSVmax,|D|) (17)

For the die |D| − 1, the lower bound can be written as

LBM|D|−1
= LB2D(M|D|−1, TSVmax,|D|−1) (18)

However, we also have to consider the fact that all the modules in

the upper two dies can be tested with at most TSVmax,|D|−1 TSVs.

We get

LBM|D|,|D|−1
= LB2D(M|D| ∪M|D|−1, TSVmax,|D|−1) (19)

The true lower bound on the test time of the upper two dies is

simply the maximum of Equations (17), (18), and (19). Inductively,

we can work backwards defining similar lower bounds on all dies

except the last die. The lower bound of test time to test all upper

tiers can be written as

LBD−D1 =
|D|
max
i=2

{LB2D(∪|D|j=iMj , TSVmax,i)} (20)

This is the time to test the upper die with TSVmax,|D| TSVs, the

upper two dies with TSVmax,|D|−1 and so on. The test time of the

entire 3D stack can than be given by.

LB3D = max(LB3D−D1 , LB2D(M3D, Pmax)) (21)

This is a general equation, for arbitrary TSV constraints. However,

for the special case when all the TSV constraints are equal, say

TSVmax, this can be reduced to

LB3D,eq = max(LB2D(∪|D|i=2Mi, TSVmax), LB2D(M3D, Pmax))
(22)

Approximate formulae can then be obtained by linearisation

LB′3D = max

{
|D|
max
i=2

2 ·∑|D|
j=i

CMi

TSVmax,i
,
2 · CM3D

Pmax

}
(23)

If we have uniform TSV constraints TSVmax, then we get

LB′3D,eq = max

{
2 ·∑|D|

j=2
CMi

TSVmax
,
2 · CM3D

Pmax

}
(24)
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