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Fast Layout Generation of RF Embedded Passive
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Abstract— In this paper, we present a methodology for the
automatic generation of layout for radio frequency (RF) designs
using embedded passives. Our methodology is divided into three
steps: 1) pre-layout optimization; 2) placement and routing;
and 3) post-layout optimization. We show that our methodol-
ogy generates layouts with small area and good performance
response within a fraction of design time compared with
fully manual design effort. We make use of circuit models to
represent and optimize the physical layout of the resistance-
inductance-capacitance (RLC) components as well as the entire
RF circuit that uses them. We perform non-linear mathematical
programming-based optimization at various stages of the method-
ology to achieve high quality layouts. Full wave electromagnetic
simulations are kept completely out of the design loop, so our
methodology significantly reduces design time. We have used our
methodology to successfully generate layouts for large-scale filter
circuits.

Index Terms— Embedded passive, filter design, layout genera-
tion.

I. INTRODUCTION

PASSIVE elements are an important part of microelec-
tronic devices. The number of passive components in

handheld devices and computers is greater than 80% of the
total part counts. Moreover, the passive to active ratio contin-
ues to grow [1]. Embedded passive is an emerging technology
that has a potential for increased reliability, improved electrical
performance, size shrinkage, and reduced cost [2]. Using this
technology, various passive components used in systems are
integrated into packaging substrate via multiple layers. A very
popular choice for the embedded passive substrate is liquid
crystalline polymer (LCP) (see Fig. 1). LCP is a low-loss
material (tanδ = 0.002) with relative permittivity (εr ) of
2.95. The material properties are invariant up to 20 GHz
with negligible moisture absorption (0.04%). The process is
also known to be low cost and low temperature [2]. Thus,
LCP-based embedded passives promise high quality passives
implemented in the packaging substrate.

However, the design process for the circuits using embedded
passives is non-trivial due to the complex electromagnetic
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interactions that cause undesired parasitics, leading to non-
ideal circuit behavior. The desired response of a given radio
frequency (RF) layout is tightly-coupled with the response
of the individual components and the parasitics of wires that
connect them. The manual design cycle for such layouts can be
very time-consuming, typically requiring a few weeks, if not
months, of effort. The design time bottleneck in this case is the
computationally-intensive electromagnetic simulations that the
designers perform to ensure that their layouts achieve desired
responses and performance. Depending on the design require-
ments, many iterations of “layout update+electromagnetic
(EM) simulation” cycle are needed, thereby increasing the
overall design time and time-to-market.

Our goal in this paper is to reduce this prohibitive design
time of manual approach by an automatic layout generation
tool. Our method is library-based, where we assume a library
of embedded passive resistance-inductance-capacitance (RLC)
components with varying values and sizes is given. This
library contains the circuit models, layouts, and performance
models for the RLC components. Given a circuit topology to
be implemented using embedded passives, we first select an
initial set of components to be used from the library based
on the RLC values. We then combine the circuit models of
individual components and build one for the entire design.
The initial selection of components is then updated by our
novel non-linear optimization method. Once this pre-layout
optimization is completed, we perform automatic placement
and routing for the components in the final component list.
We present a novel integer linear programming (ILP)-based
method to ensure the high quality of the final layout while
alleviating the computational burden of the ILP solver. Once
the layout construction is completed, we perform post-layout
optimization that involves component resizing and rerouting.
Our novel approach ensures that the final layout is the most
area-compact and meets the desired performance requirements.
Compared with the fully-manual approach, our automatic
method offers the following advantages.

1) Design Time: Our method generates a layout with rea-
sonable quality within a fraction of design time. More-
over, our final layout can further be refined manually
by the RF designers. Since it is easier to tweak a
given good solution to meet the desired goals rather
than starting from scratch, our approach reduces the
overall design time significantly compared with the
fully-manual approach.

2) Design Space Exploration: Our method can easily gen-
erate multiple layouts with similar response and varying
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Fig. 1. Copper-cladded flex LCP sheet.
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Fig. 2. Circuit schematic of a ten component band pass filter.

dimensions. This allows the designers to explore the
design space and choose the ideal shape for the entire
design.

Our experiments indicate that this entire process typically takes
less than 30 minutes for 10–20 component RF filters. In most
cases, the final filter response is very close to ideal circuit
response, which can be very hard to achieve even for expert RF
circuit designers. Compared with other heuristic approaches,
our mathematical programming-based methods generate better
quality layouts within a comparable runtime.

The rest of this paper is organized as follows. In Section III
we discuss previous works in analog and RF circuit layout
generation. In Section IV we discuss our overall design flow.
In Section V we discuss our pre-layout optimization method.
In Section VI we discuss integer programming-based method
to generate place and route solutions. In Section VII we
discuss how to optimize a given place and route solution for
performance and area. We present our experimental results in
Section VIII and conclude in Section IX.

II. MOTIVATION

In this section, we briefly discuss how interconnect par-
asitics can impact the performance metrics of a given in
RF circuit layout. We also discuss the role of mathematical
programming in achieving good quality layouts. Let us assume
that we are given a circuit as shown in Fig. 2 for which we
would like to generate its corresponding layout that meets
the required performance objectives. A simple approach to
generate the layout of the given circuit would be as follows.

1) Choose components based on the values as shown in the
Fig. 2 from a library of components.

2) Manually place the components (based on certain objec-
tives) as seen best.

3) Manually route various interconnects.
4) Analyze the quality of the designs based on EM simu-

lations.

(b)

(a)

Fig. 3. Layout comparison of a ten-component bandpass filter (BPF).
(a) Wirelength optimized. (b) Wirelength not optimized. The circled regions
show excessive wirelength being used when wirelength is not optimized.
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Fig. 4. Response comparison of the layouts shown in Fig. 3.

5) Repeat the above steps until the desired goals are
achieved.

In the above “manual” flow, two steps are critical. First,
how to place the components (= placement). Second, how to
connect various components together (= routing). The way
we arrange the components can impact the total area of the
layout. Typically, we would like to minimize the area because
larger area may result in larger costs. In addition, how we
arrange the components also determines how much wirelength
is needed to connect different components together. Moreover,
to meet the performance objectives, we desire to minimize
the wirelength needed to connect different components. In
Fig. 3, we show two layouts of the ten component band pass
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filter shown in Fig. 2, where the layouts differ in terms of
wirelength. Based on the responses shown in Fig. 4, we see
that reducing wirelength helps us to meet the performance
objectives easier.

Based on our analysis, the wires (including vias) needed
to connect different components largely behave as inductors.
However, these wires (or essentially parasitic inductance) can
make it difficult to achieve the performance requirements.
From an RF designers point of view, adding these extra wires
may cause a change in various design objectives such as
insertion loss, return loss, or center frequency of a given filter.
While designers can perform sensitivity analysis and see the
impact of parasitic wires on the circuit performance, such an
analysis is dependant on: 1) amount of parasitic wire added
(essentially parasitic inductance); 2) where the parasitic wire
is added; and 3) the particular topology of the circuit. The goal
of our automatic layout generator is to generate layouts for a
wide variety of circuit topologies and to do it quickly with as
little feedback from the designer as possible. Thus, during our
layout generation stage, we try to minimize wirelength needed
to connect different components to avoid problems caused by
the parasitic wires.

Based on our discussions above, our two main objectives
during automatic layout synthesis is to minimize area (due to
cost related factors) and reduce wirelength (to avoid parasitic
inductance.) We effectively use ILP methods to meet these
objectives. While ILP is an effective technique to minimize
area and reduce wirelength, it still cannot completely eliminate
all the wire parasitics. Thus, the initial layout obtained may
not meet the required performance objectives. To tackle this
issue, we further apply non-linear programming during our
post-layout optimization stage. The details of the non-linear
optimization is discussed in Section VII. We use a commercial
non-linear optimization tool in our flows. This ILP +non-
linear hybrid approach is shown to be highly effective in syn-
thesizing RF layouts that meet the desired performance goals.

III. PREVIOUS WORK

Automatic layout generation methods for analog and RF
circuits can be broadly divided into two major categories:
template-driven method, and full-custom method. In template-
driven method, a geometric template for the layout of the
circuit is provided for a given design. The final layout is
completed by correctly generating the components and the
wires that fit into the selected template. Such an approach
works the best when changes in circuit parameters may result
in little change in the layout structure. Such an approach
works when we already have a good layout template for a
given circuit. A template-driven approach also tends to have
shorter runtime because the solution space of the layout has
been reduced significantly. The works in [2]–[5] belong to
this group. The works in [4], and [5] look at performance
optimization of the layout while considering interconnect
parasitics. They ensure that the routing topology of the given
layout is maintained during resizing. The authors in [2] discuss
techniques for automating the design of embedded passive
components. Note that these works focus only on resizing a
given layout topology instead of constructing layouts.

In full-custom method, the entire layout for a given circuit
is built by the tool. The main goal is to generate a layout
that satisfies the performance specifications while minimizing
the overall layout area. In this approach, no known template
of the layout is provided as an input and the tool has to
generate its own layout. The layout is also optimized for
area, wirelength, and aspect ratio under various geometric
constraints to meet the design requirements. Tools such as
ILAC [6] and KOAN/ANAGRAM [7] are well known. KOAN
relied on a very small library of device generators and incor-
porated important layout optimizations into the placer. The
placer is based on simulated annealing algorithm and can
dynamically fold, merge, and abut metal-oxide-semiconductor
devices. ANAGRAM is a maze-style detailed router, capable
of supporting several forms of routing considering parasitic
avoidance and symmetry. The authors in [8] preformed floor
planning for RF circuits, where they evaluate RF layouts
in terms of geometric performances such as wirelength and
planarity constraints.

However, these tools primarily focus on geometric objec-
tives. These objectives in general improve analog response of
the final designs, but the approaches that tackle the analog
metrics more directly are desired. A major challenge in this
case is on how to manage undesired parasitics created in the
overall analog/RF layouts. Tools that use this approach include
ROAD [9] and PUPPY-A [10]. In these tools, sensitivity analy-
sis is used to quantify the impact of low-level layout decisions
on final analog performance. This paper in [11] quantifies the
impact of layout decisions on circuit performance and showed
how to achieve maximum bounds on various parasitics. This
paper in [12] targets primarily complementary-metal-oxide-
semiconductor technology, not packaging substrate such as
LCP or LTCC. They do not describe a way of estimating
parasitics for more than two-pin nets. Such an approach would
not work for RF embedded passive circuit since knowing
the exact nature of interconnect parasitics is critical. Sommer
et al. [13] presented a layout synthesis algorithm for embedded
passive components such as capacitor, resistor, and inductor.
But, they do not discuss how to use them to construct an entire
circuit.

IV. DESIGN FLOW

An overview of our automatic layout generation tool flow is
shown in Fig. 5. The basic approach is to perform pre-layout
optimization, followed by the generation of a placement and
routing solution, and post-layout optimization for the entire
layout.

1) Step 1: Component shapes are chosen from the library
based on initial values in the given circuit.

2) Step 2: Pre-layout optimization using approximate wire-
length and via connectivity information is performed.
The component selection and resizing are performed in
this step.

3) Step 3: A place-and-route solution optimizing various
geometrical objectives such as area and wirelength is
generated. Circuit responses are carefully monitored and
optimized based on the circuit model of the entire layout.
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Fig. 5. Design flow of our automatic layout generation of embedded passive
RF circuits.

4) Step 4: Post-layout optimization is performed consider-
ing the entire layout. In this step, we try to minimize the
layout area while meeting the performance objectives.

We use commercial non-linear optimization tools in our
optimization engine. Finally, we perform a full-wave EM
simulation using SONNET for final verification of the layout
generated. Compared to the traditional design flow where
“manual placement and routing” and “EM simulation” are iter-
ated, our new design flow constructs a high-quality layout in a
fraction of the time since the time-consuming EM simulation
is kept out of the loop. Our layout optimization is mainly based
on the circuit representation of the components and the overall
layout. Our final solution can be used for further manual touch-
up if necessary.

V. PRE-LAYOUT OPTIMIZATION

In this section we describe the details of pre-layout opti-
mization. Given a library of embedded passives, a circuit
netlist to be implemented, and its initial selection of the
components from the library, the objective of our pre-layout
optimization is to find new component dimensions which bet-
ter meet the desired circuit objectives while considering intra-
component parasitics. In addition to approximate the effect of
nets connecting different components, each net is assumed to
have a non-zero wirelength. The net is considered to have a
single Steiner point. A single Steiner point results in a star-
shaped net topology. Steiner tree problem involves connecting
a designated set of vertices (pins), using a minimum weight
tree. In addition to the set of designated vertices, additional
points in space may be used to reduce the length of the
Steiner tree. These additional points are known as Steiner
points. At this stage of the design we assume that the net
has a single Steiner point. This topology consists of all pins
of the net plus one additional point (Steiner point). We then
connect every pin in the net to this Steiner point. The idea is
to obtain approximate shapes of components considering the
effect of both intra-component and inter-component parasitics.
This ensures that the layout solutions obtained during place-

Dominating 
capacitance

Dominating
inductance 

Parasitic
elements

(a)

(b)

Fig. 6. Circuit models of (a) single capacitor and (b) single inductor, showing
the dominating and parasitic elements. The parasitic elements are circled.

and-route step contain geometric shapes that are closer to the
final layout obtained.

A. Component Modeling

Fig. 6 shows the circuit model of a capacitor and an
inductor. The circuit elements in each component are grouped
into two categories, namely, dominating element and parasitic
elements. The dominating element value reflects the main
inductance or the capacitance value of a given component.
During initial component selection, components were selected
based on their dominating element values. Due to the effect
of parasitics in each component, however, the initial selection
does not always meet the desired circuit response. The goal
of our pre-layout optimization is to find new components
(possibly with new dimensions) such that they meet the desired
circuit responses while considering both the dominating and
parasitic elements. In addition to intra-component parasitics,
additional parasitics such as vias connecting to ground and
interconnects are also modeled. Due to these changes in the
circuit model, the overall shape of the component after the
optimization may change, i.e., components are resized. Note
that our optimization is not based on the response of individual
components but on the circuit model of the entire design.

B. Non-Linear Optimizer

To optimize (= resize) the components in a given
unplaced/unrouted circuit, we use a commercial non-linear
circuit optimization tool. The input to this problem is the cir-
cuit representation of the design (= netlist) and the embedded
passive library. The objective of this non-linear optimization
depends on the type of design and desired goals. In case of
RF filters, for example, various frequencies of interest, signal
loss, and noise are the main targets. The non-linear optimizer
determines the value of the variables in the formulation so that
the objective function is optimized. The non-linear optimizer



36 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO. 1, JANUARY 2012

works as a circuit optimizer. The objective of the optimizer
is to find circuit components that meet the performance
objectives. The constraints for the optimizer consist of various
equations that satisfies the Kirchoff’s laws at various nodes
based on nodal analysis. We optimize the circuit at a certain
set of discrete frequency points within the range of interest.
The non-linear optimizer is discussed in greater detail in the
following section.

The input to the non-linear optimizer is the circuit
netlist N , a set of circuit components that to be resized
C = c1, c2, . . . , cn , and a set of frequency points W =
w1, w2, . . . , wr at which we want to optimize the circuit
response. For each frequency point wi , we generate a set of
constraints Gi V = I , where Gi is the conductance matrix
obtained at frequency wi using modified nodal analysis. V
and I are the node voltages and the current in the branches
of the circuit. We also compute the response of the circuit at
each frequency Ri that corresponds to the S or Z parameter
response of the circuit at the frequency wi . Based on the
above discussion, the non-linear optimizer is formulated as
follows:

Minimize
∑∣∣Ri − Rreq

i

∣∣ (1)

Such that Gi V = I, ∀i Clow ≤ C ≤ Chigh . (2)

In the above equations, Rreq
i corresponds to the required

response at each frequency wi . Equation (2) satisfies the
Kirchoff’s laws at each frequency wi . Clow and Chigh

correspond the lowest and the highest values of the
components that can be resized.

C. Pre-Layout Optimization Algorithm

During our pre-layout optimization process, the parasitic
element values of all components are fixed while the domi-
nating element values are changing. The optimization process
finds the best values for the dominating elements while opti-
mizing the overall objective function. For every component
with newly updated dominating element value, we replace
it using the given library. This new component may have a
different dimension than the old one. In addition, since the
new component has different dominating value, the parasitics
are also different in this new component. We then repeat
the overall process until the maximum change in dominating
element values is below a threshold or the maximum number
of iterations is reached. Note that the new dominating values
the non-linear optimizer determines should lie within a fixed
range so that we can always find the corresponding compo-
nent in the library. This range is determined by the size of
the library.

The pseudo-code of our pre-layout component resizing is
shown in Fig. 7, where c j is component j in the circuit, cdom

j
and c para

j are its dominating and parasitic elements. Line 3
fixes the parasitic element values and assigns the dominating
element values as variables for the optimization engine. In
line 4 we find the minimum and maximum values (= range)
for dominating elements of each component based on the
availability in the library. The optimization engine is called in
line 5. Lines 6 and 7 update the current solution based on

Pre-layout Optimization
input: netlist NL with initial component selection, library
output: NL' with resized components
1. cnt = 0;
2.  while (max_change(c

j
dom) > ε and cnt < max_itr) 

3. ∀cj ∈ NL, set c
j
dom as variable and c

j
para as fixed;

4. ∀c
j
dom, find [min, max] range;

5. optimize ∀c
j
dom to meet response;

6. find new components for new c
j
dom values;

7. update c
j
para values;

8. cnt
   
++;

Fig. 7. Pseudo-code of our pre-layout optimization algorithm.

the values (both dominating and parasitic elements) obtained
by the non-linear optimization engine. The above process
is repeated until the maximum change in dominating ele-
ment values is below a threshold or the maximum number
of iterations is reached. Table III in Section VIII provides
experimental results on the effectiveness of our pre-layout
optimization step. We observe that the area and performance
metrics significantly improve at the cost of 2× runtime over-
head.

VI. ILP-BASED PLACEMENT AND ROUTING

Compared with digital circuits, analog circuits are consider-
ably smaller. However, the analog circuits are highly sensitive
to layout parasitics, thus making analog placement and routing
highly challenging. Our goal during the placement and the
routing step is to focus on geometry-related objectives such
as area and wirelength. The objective is to keep the parasitics
due to wirelength a minimum while reducing area. Reducing
wirelength ensures that interconnect parasitic is minimized.1 In
addition, during layout generation we perform circuit extrac-
tion and simulation-instead of EM simulation-occasionally to
make sure that our layout obtains the desired quality while
meeting the given design specifications. Our strategy is to
perform placement and routing simultaneously to optimize the
layout area and wirelength effectively. Our optimization engine
choice is ILP, enhanced with various speedup techniques.
Compared with the popular rectangle packing-based method
such as sequence pair [14], [15], our ILP-based method
obtains significantly better quality layouts as demonstrated in
Section VIII. The runtime overhead is not significant because
of our strategy to reduce the problem size while maintaining
the solution quality. In the following sections, we discuss the
details of our ILP formulation.

A. Issues in ILP-Based Method

The layout generation problem can be considered as a
rectangle placement problem since even interconnects can
be considered as rectangles. In order to solve this kind of

1Note that we leave enough keep-out zones around each RLC component
so that the EM coupling between components, when they are tightly packed
for area minimization, is still negligible.
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Fig. 8. Topology of a dual trunk net with one horizontal and one vertical
main trunk that intersect. Each block has a net connect rectangle which extends
from the pin on the block to either the vertical or horizontal trunk.
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Fig. 9. Possible configurations of dual trunk net topology for two-pin net.
(a) Horizontal and vertical trunk form a L-shape. (b) Vertical trunk reduces
to length zero, resulting in a net topology that looks like a single trunk.

problem, we need to address three issues: 1) the number of
rectangles to be used to model interconnects; 2) the number
of integer variables; and 3) loops in the design. The first two
issues have a direct impact on the complexity of the resulting
ILP formulation. In case of the loop issue, we construct our
layout iteratively by considering one net (and the components
it connects) at a time. Specifically, we place and route the
components in the current net, and then we move onto the next
net, etc. If there exists a loop between the components already
placed and the components to be placed, we need to generate
additional constraints to connect them together. This requires
more variables and constraints compared with cyclic netlist.
Thus, we first propose a technique to perform placement and
routing for acyclic netlists. We later show how our formulation
can be modified to consider circuits containing loops.

In order to use integer programming for routing, we need
to know how many rectangles should be used for a given net
and how those rectangles can be connected. To address this
problem, we define a fixed topology for each net. Every net
topology in the design has two trunks, one horizontal and other
vertical that intersect each other. In addition, each block that
needs to connect to the net connects to either the horizontal
trunk or vertical trunk of the net. These trunks can be of zero
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Fig. 10. Shape of a general polygon with top, bottom, left, and right
boundaries.

length if necessary. Fig. 8 describes how this net topology is
defined. It can be seen that our trunk-based routing topology
can handle multiple pin nets easily. For a two-pin net, the
length of horizontal and vertical trunk reduces such that the
trunks do not extend beyond the point of intersection. This
results in a routing topology for two pin nets that resemble a
single trunk or a L-shaped trunk as shown in Fig. 9.

The second major concern is to reduce the number of integer
variables. We observed that in order to perform placement for
n rectangles, we need n × (n − 1) integer variables. To tackle
the problem of large number of integer variables, we use two
approaches.

1) Incremental placement and routing: We perform the
placement and routing of the circuit one net at a time.

2) Super block-based integer programming: We make use
of our knowledge of the layout topology to reduce the
number of integer variables.

In the following sections, we discuss in detail how these
techniques are used to generate layouts for our circuits.

B. ILP-Based Incremental Placement and Routing

Our approach is net-by-net, where at each iteration of the
algorithm we perform placement and routing of the current
net and the blocks connected to it. This process is done on
top of the nets and blocks that are already laid out from
previous nets. Thus, the total number of place and route
iteration is equal to the number of nets in the design. To
successfully implement such a scheme, we need to ensure that
at each iteration no overlap exists between the current and
previous nets and blocks. We use ILP method to perform this
placement and routing. The objective of our ILP formulation
is to minimize wirelength and area of the newly created layout
at each iteration. In the following sections, we show how to
generate the ILP constraints to ensure that the layout generated
has no overlaps while optimizing the objective function.

1) Overlap Constraints Between Rectangles and Polygon:
At any given iteration of our incremental ILP-based approach,
the current layout solution constructed so far takes the form of
a general polygon. Fig. 10 shows how a general polygon may
look like. To ensure that the rectangles to be newly added
during the new iteration do not overlap with the existing
layout, we generate overlap constraints between a set of
rectangles and a polygon.
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Fig. 11. Top boundary of a polygon, where all horizontal segments are
highlighted in bold. A given horizontal segment A is shown with its leftseg
and rightseg.

To ensure that two rectangles do not overlap, (8)–(15) as
discussed in Appendix A are used. In case of rectangles and a
polygon, however, different equations are required. In Fig. 10,
we see that there exists a large number of regions where a
rectangle can fit into. To solve this problem, we generate
constraints separately for each of the four sides of the polygon
boundary marked as top, bottom, left, and right. In what
follows, we show how the constraints are generated for the
top boundary of the polygon. The constraints for other sides
can be generated similarly.

In order to obtain high quality solutions, we need to
ensure that the constraints we generate allow the newly added
rectangle to be placed in every possible region in the polygon
while keeping the number of integer variables at minimum.
Fig. 11 shows various “horizontal segments” one side of the
polygon. Each horizontal segment is defined by its left and
right coordinate and the height of the segment. For a given
horizontal segment A, we define leftseg and rightseg as the
first horizontal segments that are to the left and right of A and
are above the height of A. The height of a segment is measured
with respect to a large negative reference base value as shown
in Fig. 11.

We have the following lemma.
Lemma 1: Given a horizontal segment A on a polygon

boundary, the valid placement constraint that ensures a rec-
tangle R does not overlap with existing polygon is obtained
as follows: R must be above the height of A and to the left
of rightseg and to the right of leftseg.

Since the rectangle is to be placed above the current
horizontal segment, we observe that R will not overlap with
the segments that are below A. In addition, since it is to the
left of rightseg and to the right of leftseg, it does not overlap
with other horizontal segments which may be above A. This
is because leftseg and rightseg are the first segments to the left
of, right of, and above A. Such constraints can be generated
for each horizontal segment, which in turn covers the total
placeable area for the given rectangle R on one side of the
polygon as shown in Fig. 12. Repeating this process for all
four sides ensures the rectangle is placed outside the polygon
without any overlap. In addition, our area objective function
minimizes the overall area of the newly expanded polygon.
To further reduce the number of integer variables used in
our ILP formulation, we make use of our knowledge of the

A

case 1 case 2

case 3 case 4

A

A

A

Fig. 12. Available placement area (shown in blue) identified based on a
given horizontal segment A on the top polygon boundary.

layout topology. The details of this method are discussed in
Appendix B.

C. Net Ordering

Net ordering decides which net and the blocks in it to be
placed and routed next in our net-by-net approach. This net
ordering can have a big impact on the final layout quality.
We implemented a net-ordering scheme, where the nets are
placed and routed such that the layout grows in a star-shape
fashion. To do this, we start with a net which is at the
center of the netlist tree having the maximum distance from
the input/output ports. Since the algorithm routes the nets
in breadth-first fashion, the order of the remaining nets is
almost fixed. Any ties between nets which may be expanded
simultaneously under the breadth-first order is resolved based
on the degree of the nets, where the net that contains more
blocks gets expanded first.

D. Sizing at Each Place-And-Route Iteration

Since we perform place-and-route incrementally at each
iteration, we know the exact amount of wire parasitics added
at a given iteration. Thus, at each iteration we perform a
layout optimization that is based on its circuit representation,
where the new interconnect parasitics are added to the existing
circuit representation. Incremental optimization helps us to
compensate for the effect of parasitics added by a given net at
each iteration. We observe that using such an approach helps
us in getting better quality results because we can take care of
various wire-parasitics added during the placement and routing
iteration. Our post-layout optimization method presented in
Section VII is used in between the net-by-net place-and-route
iteration to resize the components in the polygon and compact
the overall polygon layout.

E. Summary of the Overall Design Flow

In this section we summarize how integer programming can
be used for layout generation. To generate the layout we follow
the following steps.
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TABLE I

AREA (mm2), WIRELENGTH (MILS), AND RUNTIME (min) COMPARISON

BETWEEN ILP VERSUS SEQUENCE PAIR-BASED METHOD

ILP method Sequence pair

area WL cpu area WL cpu

10-comp BPF 31.1 205 46 29.9 298 37
11-comp dual-BPF 27 182 143 22.1 263 88

15-comp BPF 36.5 248 123 32.2 356 97
21-comp HPF 73.1 341 247 68.3 465 189

Ratio 1.0 1.0 1.0 0.91 1.58 0.74

1) Start with net and identify the various super blocks
present.

2) Formulate ILP including various constraints and objec-
tive functions.

3) Optimize layout while considering the new net parasitics
added.

4) Keep repeating the above steps until all the nets and
blocks are placed and routed.

The above technique works well for circuits whose netlists
have no loops present. In case there are loops present, we
first extract the largest sub-netlist from the existing netlist that
forms a tree. ILP-based placement and routing is performed
on the sub-netlist. Finally the pins that need to be connected
to complete the loop are connected using a maze router.

F. Sequence Pair Placement and Maze Routing

In this section we discuss the details of our sequence
pair [14] based layout generation scheme. The purpose is to
compare our ILP-based method presented in Section VI with
this popular approach as shown in Table I.

We first generate the placement of various components in
the design using this simulated annealing-based [14] opti-
mization. The routing is completed using an area router with
corner stitching data structure. The details of the approach are
discussed in the following sections.

1) Component Placement Using Sequence Pair: We discuss
briefly the sequence pair algorithm described in [14]. A
sequence-pair of a set of modules is a pair of sequences of the
module names. For example, s = (abcd, bacd) is a sequence-
pair of the module set {a, b, c, d}. We can derive the relative
positions between the modules from a sequence-pair by the
following rules (see Fig. 13).

1) If s = (. . . a . . . b . . . , . . . a . . . b . . .), then module b is
to the right of module a.

2) If s = (. . . a . . . b . . . , . . . b . . . a . . .), the module b is
below module a.

Given a candidate solution c = (s1, s2), a pair of constraint
graphs (Gh, Gv ) are generated according to the sequence pair
to represent the relative positions between the modules. In the
horizontal (vertical) constraint graph the Gh(Gv ), the vertices
represent the modules and the edges represent the relationship
between the modules in the horizontal (vertical) direction, e.g.,
if A is to the left of B (A is below B), there will be an edge
from A to B in Gh(Gv ) with weight w(A)(h(A)), where w(A)
is the width and h(A) is the height of module A. The final
position of all modules is determined by running the shortest

A

B

C

D

A

B

C

D B

A

horizontal
constraint graph

vertical
constraint graph 

floor plan

Fig. 13. Example of sequence pair (abcd, bacd).

path algorithm on Gh and (Gv ), which determine the locations
of the modules in x and y, respectively. Fig. 13 shows packing
for sequence pair s = (abcd, bacd).

Simulated annealing [16] is a general optimization strategy
based on iterative improvement with controlled hill climbing.
This hill climbing allows annealing to avoid many local
minima and reach better global solutions. Sequence pair is
used to represent various solutions in the annealing frame
work. In our case of embedded passive component placement,
the metrics we use for evaluating a given sequence pair are:
1) area; 2) wirelength; and 3) coupling. Coupling as a cost
metric is considered only for inductors in the circuit. The
objective is to place two inductors far apart or diagonally apart
thus ensuring that there is low coupling between them.

2) Area Router: In order to complete routing for the
sequence-pair based placement solution, we employ a line
expansion router [7]. The router is built on top of tile plane
data structure [17]. Such a data structure helps to remove the
limitations of a grid-based routing graph. The data structure is
based on representing both the used and unused spaces in the
layouts as tiles. The tiles are limited to be rectangles with sides
parallel to the axis. Various tiles are linked by a set of pointers
at their corners called corner stitches. Such a representation
of the layout has distinct advantages because the size of tiles
may vary: the structure adapts naturally to variations in sizes
of used tiles. Efficient algorithms exist for manipulating and
querying the data structure.

The router routes one net at a time. The router works by
storing partial paths sorted by cost. The least cost path is
selected and expanded. This expansion results in new partial
paths which are added into the list of existing partial paths.
All paths are maintained in heap kind of data structure. The
process of expanding continues until all the pins in the given
net are connected. The objective is to ensure that routing for all
nets is completed and total wire length for all nets is optimized.

VII. POST-LAYOUT OPTIMIZATION

The goal of the placement and routing phase was to mini-
mize the parasitic effects of interconnect with our wirelength
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Fig. 14. (a) Initial placement and routing solution. (b) Change in routing
and block locations, where the size of component A is changed.
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Fig. 15. Change in capacitance as a function of area. We observe that
capacitance can be largely approximated as varying linearly with the area in
regions close to the current capacitance value.

objective so that the overall RF embedded passive designs
show responses that are closer to the desired responses.
However, the response of layout may not always match the
desired response. In addition, component sizing done during
pre-layout stage may not be ideal for the given layout topology
simply because the interconnect length is not determined
during that stage.

During our post-layout optimization stage, we perform com-
ponent resizing while considering interconnect parasitic such
that overall layout topology is preserved as much as possible
and the area is minimized. We propose a new way to perform
post-layout optimization named relative place-and-route that is
based on sequential linear programming. We then compare this
method with another approach we develop: iterative feedback.

A. Relative Place-And-Route

To optimize a given layout topology for both area and
performance, we make the following observations.

1) Interconnects can have a huge impact on performance.
Thus, minimizing interconnect length while performing

6.5

6.0

5.5

5.0

4.5

4.0

3.5

3.0
40 45 50 55 60

Side length

Inductance

In
du

ct
an

ce

Fig. 16. Change in the main inductance based on its side-length for inductors.
We observe that inductance can be approximated as a linear function of its
side-length when other parameters are fixed.

layout optimization is critical to obtain best layout
results.

2) The shape of the component is critical based on the
current layout topology. Choosing the right shape of the
component helps to reduce the overall layout area.

To model interconnect length accurately based on the size
of components, we introduce the concept of relative place-
and-route. Previous work in [4] and [18] enable us to perform
rectangle compaction horizontally or vertically. We employ
a similar technique to generate a set of constraints, where
locations and dimension of each component and interconnect
can be determined based on the width and height of each
component. Fig. 14 shows the effect on routing solution based
on resizing of a related component. The equations required
to ensure layout topology is maintained after resizing are as
follows (we show equations only for horizontal axis. Similar
equations exist along vertical axis):

cmpi
xr = cmpi

xl + cmpi
w ∀ cmpi (3)

wci
xl ≥ cmpi

xr + const ∀ wci (4)

cmpi
xl ≥ wci

xr ∀ cmpi (5)

lwi = wci
xr − wci

xl∀wci . (6)

Equation (3) ensures that the right coordinate of a component
cmpi is equal to the left coordinate of the component plus
the width cmpi

w of the component. Equation (4) ensures
that the left coordinate of a given wire wci

xl is greater the
right coordinate cmpi

xr of all blocks to the left of the given
wire. Similarly, (5) ensures that all blocks to the right of a
given wire have their left coordinates cmpi

xl greater than the
right coordinate of the wire wci

xr . Equation (6) computes the
wirelength of a given wire. If desired, additional constraints,
such as specifying the minimum separation between blocks
and wires, can be easily added to this ILP-based frame work.

B. Area-Based Component Sizing

To effectively resize components for area and perfor-
mance optimization, component resizing is done based on the
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Post-layout component resizing
input: initial layout and its circuit presentation NL
output: optimized layout with resized components
1. partition the initial circuit;
2. for  (each sub-circuit subi  ∈ NL)
3. cnt = 0;
4. do
5. find circuit model ckti

sub of layout;
6. resize ∀cj

sub  component ∈ ckti
sub;

7. cnt  ++;

14. cnt  ++;

8. while (error  (ckti
sub) >  ∈ and cnt < maxiter)

15. while (error  (ckt) >  ∈ and cnt < maxiter))
16. return resized layout;

9. intialize ∀ci
  ∈ ckt such that ci

  = ci
 sub;

10. cnt = 0;
11. do
12. find circuit model ckt of total layout;
13. resize ∀cj  component ∈ ckt;

Fig. 17. Pseudo-code of our Iterative Feedback resizing algorithm.

sensitivity of performance parameters to the component
dimensions. We make the following two critical observations.

1) Capacitance of a component can be approximated as a
function of its area. The change in dominating capaci-
tance as a function of area is shown in Fig. 15.

2) The model for inductance as a function of parameters
such as line-width, number of turns, spacing, etc., is
a non-trivial function. However, after place and route,
we fix all other parameters except for the side-length
of inductor that can vary along horizontal and vertical
directions. We observe that the dominating inductance
changes linearly with the change in its side-length when
other parameters are fixed as shown in Fig. 16.

Based on these observations, we resize components using
sequential LP. The basic idea is to compute the sensitiv-
ity of the performance metrics in terms of the component
dimensions. For each performance metric Pi , where PiεP
and P is the set of all performance goals, we compute
(�Pi/�W j ),∀i, j , where �W j is the change in the width
of component j . Similarly, we compute (�Pi/�H j ),∀i, j ,
where �H j is the change in height of component j . The
sensitivity values are computed while considering the effect
of current wirelength and intra-component parasitics. During
each stage of the sequential LP, the objective function is
formulated such that the difference in required and cur-
rent performance metric is minimized. To reduce the effect
of interconnects, we include wirelength as an objective in
our sequential LP. In addition, area is added as another
objective in the LP. The overall objective function is as
follows:
λ1 · �DPi + λ2 · W L + λ3(prevw · δH + prevh · δW ) (7)

where λ1 ∗ �DPi is the sum of the difference between
the current performance metric and the required performance
metric, W L is the overall wirelength in the layout, δH and

core 1: er = 3.38, loss = 0.0035, t = 12 mil

core 2: er = 3.54, loss = 0.0035, t = 4 mil

core 3: er = 3.38, loss = 0.0035, t = 24 mil

via

LCP
t = 0.5 mil

LCP
t = 0.5 mil

Surface mounted
component

metal

Fig. 18. Substrate stack up targeted for LCP-based embedded passive circuit
layout. It contains two layers of metal-covered LCP layers. The passive
elements are added into the metal layers shown in yellow. The thickness
of each layer is also shown.

TABLE II

AREA (mm2), AVERAGE RELATIVE ERROR (%), AND RUNTIME (min)

COMPARISON BETWEEN ITERATIVE FEEDBACK VERSUS RELATIVE

PLACE-AND-ROUTE METHOD

Iterative Feedback Relative P&R

area error cpu area error cpu

10-comp BPF 34.1 7 14 29.9 5 37

11-comp dual-BPF 31.5 9 39 22.1 5 88

15-comp BPF 39.4 7 42 32.2 4 97

21-comp HPF 80.5 14 94 68.3 10 189

Ratio 1.0 1.0 1.0 0.83 0.65 2.2

TABLE III

AREA (mm2), AVERAGE RELATIVE ERROR (%), AND RUNTIME (min)

COMPARISON BETWEEN PRE-LAYOUT AND NO-PRE-LAYOUT

OPTIMIZATION

no optimization w/optimization

area error cpu area error cpu

10-comp BPF 36.8 7 12 29.9 5 37

11-comp dual-BPF 33.2 8 35 22.1 5 88

15-comp BPF 36.3 7 39 32.2 4 97

21-comp HPF 79.8 19 82 68.3 10 189

Ratio 1.0 1.0 1.0 0.82 0.58 2.47

δH are the change in width and height of the layout, and
prevw and prevh are the width and height of the layout in the
previous LP stage. We multiply the change in height with the
previous width and vice versa because if the previous width
prevw is greater than the previous height prevh , then more
area reduction is achieved per unit change in height compared
with per unit change in width.

Our sequential LP consists of a series of LP steps.
Rather than using the circuit-based optimizer described in
Section V-B, we correlate performance, area, and wirelength
metric of each component to the change in component size
based on (7). The constraints for the LP at each stage are based
on (3)–(6). Once the LP for the current iteration is solved, we
update the sensitivity values for each component based on (7).
The entire process is then repeated. We perform our sequential
LP for a given number of user defined iterations.
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(a) (b)

(c) (d)

Fig. 19. Filter layouts obtained with our ILP-based method. (a) Ten-component BPF (8.9 mm ×3.5 mm, 37 min), (b) 11-component dual-BPF (6.0 mm ×
4.5 mm, 88 min), (c) 15-component BPF (8.9 mm × 4.1 mm, 97 min), and (d) 21-component HPF (10.3 mm × 7.1 mm, 189 min).

C. Iterative Feedback Approach

We describe our Iterative Feedback approach in this section.
This method serves as a baseline to compare our relative place-
and-route method against as shown in Table II. Our Iterative
Feedback approach is similar to our pre-layout optimization
presented in Section V, where the components in the design
are resized to improve the response of the final layout. The
main difference is that during iterative feedback, we are given
an initial layout of the whole design, where the length of all
interconnects are fixed. This allows more accurate component
resizing and layout optimization compared with pre-layout
optimization.

We first extract the circuit model of the entire layout. Our
circuit model extraction is done by mapping various layout
features such as component and interconnect geometries to
the circuit model library. The layout provides the information
about the size of different components and lengths of various
interconnects that are used to connect these components. The
layout information is then used to build a circuit representation
of the layout based on the circuit model library. The circuit
model library includes the models for individual components
and various interconnect wires and vias. The circuit represen-
tation of the entire layout is then optimized for performance
specifications. During this optimization, the device sizes are
allowed to vary. The circuit layout obtained after this resizing
may have overlaps, and the routing may no longer be valid.
The circuit is then replaced and re-routed while keeping the
overall area and wirelength change to a minimum. The circuit
model of the new layout is then extracted again and the
entire process is repeated in an iterative fashion. Note that
the post-layout optimization is performed using only circuit
models, and thus leads to fast runtime. In order to reduce the

complexity of the optimization process, we divide the whole
process into two phases.

1) Local Resizing: In this step, the entire circuit is parti-
tioned into a few parts first. The partitioning is done
based on the user input. Typically a given netlist is
partitioned into two or three smaller parts. The objective
of the partition is to reduce the number of interconnects
between different partitions so that the local resizing can
be done for each partition efficiently. The sub-circuit in
partition is optimized while considering the parasitics
involved within the sub-circuit. The objective is to obtain
the response of the layout so that it matches with the
desired response.

2) Global Resizing: During this phase, all the components
of the circuit are considered for resizing. In this phase,
the solution from the local resizing is considered as a
starting point. In addition, the interconnect parasitics of
the entire layout are also considered.

The resizing is performed using methods similar to that
discussed for pre-layout optimization. The pseudo-code of the
resizing algorithm is given in Fig. 17. The circuit representa-
tion of the given initial layout is partitioned first (line 1). Then,
local resizing is performed in lines 2–8. For each sub-circuit,
we find the circuit model of the layout (lines 2–5). Each sub-
circuit is then resized using a non-linear optimization engine
to meet the desired response (line 6). This non-linear optimizer
is based on the tool presented in Section V-B. The loop is
repeated until we meet the desired response or maximum
number of iterations maxiter is exceeded (line 8). During the
global resizing (lines 9–15), the solution from local resizing
is used as the starting point. The remaining steps of global
resizing (lines 10–15) are similar to that of local resizing
(lines 3–8). The goal is to find a new layout from the given
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Fig. 20. Layout response. (a) Ten-component BPF, (b) 11-component dual-BPF, (c) 15-component BPF, and (d) 21-component HPF.

original layout which matches closely to the desired response
of the circuit.

VIII. EXPERIMENTAL RESULTS

We implemented our algorithms in C++/STL and ran our
experiments on a Linux PC running at 2.5 GHz. We ran our
tool on four filter circuits with varying number of lumped
components. Fig. 2 shows the circuit schematic of our ten-
component band pass filters. The response of the final layout
for each circuit is obtained with SONNET [19]. For each
circuit, a set of frequency points that were spread across the
range of the required response was provided as an input.
These frequency points were the points where the circuit was
optimized for performance specifications. The stack-up of our
packaging substrate is shown in Fig. 18.

A. Filter Layout and Response

Fig. 19 shows the layouts we obtained with our ILP-
based method: pre-layout optimization plus ILP-based incre-
mental placement and routing plus relative place-and-route.
We observe that the components are highly packed and the
wires connecting them are minimized. Some layouts include

whitespace mainly in order to reduce the overall wirelength.
The total runtime used to obtain these layouts range from
37 min to 189 min, which is only a fraction of the manual
design time. This demonstrates the point that our automatic
method reduces the design time dramatically while generating
layouts with small footprint and short interconnection length.

Fig. 20 shows the SONNET-based circuit response results.
The ideal response assumes there are no parasitics associated
with any component and interconnects. This serves as theoret-
ical optimal response that can never be achieved in practice.
We also show our sequence pair plus maze routing-based
method for comparison. We observe that in all these cases we
achieve a fairly accurate result with our ILP-based method in
terms of the final response. In all cases our ILP-based method
outperforms sequence pair plus maze routing method.

B. Impact of Various Optimization Methods

Table I shows more detailed comparison between ILP-based
versus sequence pair plus maze routing method in terms
of their layout qualities: we show the wirelength, area, and
runtime metrics of the layouts. ILP-based method results
in much lower interconnect length (58%) as compared with
the sequence pair-based approach. The overall runtime of
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Fig. 21. Four different cases on how two super blocks (Za + Wa ) and
(Zb + Wb) are placed. Wa is the wire connecting to block Za . Since these
two rectangles always stay together, they can be combined to form a super
block.

ILP-based method is 25% slower on average, showing that our
ILP-based method is scalable and able to handle large-scale
designs efficiently. ILP-based method shows an average 9%
increase in layout area.

We also compare Iterative Feedback and relative place-
and-route based post layout optimization schemes. For this
comparison, we used sequence pair based placement and maze
routing solution as the starting point. The results are shown
in Table II. The average percentage error was computed using
the magnitude of S-parameter response between required and
achieved results. We observe that relative place-and-route gives
better area and response but needs longer runtime as compared
with Iterative Feedback approach.

We show the impact of our pre-layout optimization in
Table III. We observe that our pre-layout optimization helps to
improve both area (18% on average) and performance (42%
on average) at the cost of runtime increase. This happens
as we have a better estimate of required device sizes during
layout generation, leading to lower area and better responses
for placed modules.

IX. CONCLUSION

In this paper, we show an effective methodology to auto-
matically generate layouts for RF embedded passive designs.
We make use of accurate circuit models to represent our
layout and perform optimization, thus keeping time-consuming
EM simulations out of the design loop. We explore various
techniques for layout generation and layout optimization.
At various stages of layout generation, we perform layout
optimization to achieve various performance metrics while
reducing the overall area and interconnect length.

APPENDIX

A. Rectangle Overlapping

We briefly discuss the set of equations required to ensure
that two rectangles A and B do not overlap. Here are the
overall ILP constraint equations

AL − BR + I1 · M + I2 · M >= 0 (8)

BL − AR + (1 − I1) · M + I2 · M >= 0 (9)

AB − BT + I1 · M + (1 − I2) · M >= 0 (10)

BB − AT + (1 − I1) ∗ M + (1 − I2) · M >= 0 (11)

AR − AL = Awidth (12)

AT − AB = Aheight (13)

BR − BL = Bwidth (14)

BT − BB = Bheight . (15)

In the above formulation, (8)–(11) ensure that the two rectan-
gles A and B do not overlap, where Ii are integer variables
and M is a large constant. We see that for I1 = 0 and I2 = 0
(8) ensures that block A is to the right of block B , and for the
other values of I1 and I2 (8) is always satisfied due to the large
value of M . Similarly, (9)–(11) ensure that for valid values of
integer variables, the two blocks A and B do not overlap.
Equations (12)–(15) ensure the width and height constraints
of the blocks. We observe that in order to perform placement
for n blocks, we need n ·(n−1) integer variables. This number
can be large for large value of n.

B. Super Block Based Integer Variable Reduction

In this section, we show that our knowledge about the layout
topology can help to create super blocks which can be used
effectively to reduce the number of integer variables used in
our ILP-based method. Consider for example two blocks Za

and Zb, where each of these blocks have wires Wa and Wb

connecting to them, respectively (see Fig. 21). Thus, the total
number of rectangles is 4, requiring 12 integer variables as
shown in (8)–(15) in Appendix A. However, we observe that
Wa is always connected to Za , and similarly Wb is connected
to Zb as shown in Fig. 21. Each of these can be considered as
a super block. There are eight possible ways in which these
super blocks can be placed as shown in Fig. 21. Thus, in
order to place these super blocks we need only three integer
variables because k integer variables can cover 2k different
disjoint cases.

To show how the integer constraint equations are written,
we write the equations for cases (1–4) shown in Fig. 21 as
follows:

Z_bL − Z_aR + (I1 + I2 + I3) · M >= 0 (16)

Z_bL − W_aR + (I1 + I2 + 1 − I3) · M >= 0 (17)

Z_aB − Z_bT + (I1 + I2 + 1 − I3) · M >= 0 (18)

W_aB − Z_bT + (I1 + 1 − I2 + I3) · M >= 0 (19)

W_aL − Z_bR + (I1 + 1 − I2 + 1 − I3) · M >= 0 (20)

Z_aB − Z_bT + (I1 + I2 + 1 − I3) · M >= 0 (21)

where, Ii are the integer variables, and M is a large constant
value. Here is how the four cases are handled.

1) Equation (16) handles case 1, where we ensure Zb is to
the right of Za .

2) Equations (17) and (18) handle case 2, where Zb is to
the right of Zacon and Zb is below Za .

3) Equation (19) handles case 3, where Zb is below Wa .
4) Equations (20) and (21) handle case 4, where Zb is to

the left of Wa and Zb is below Za .
Similar equations can be written for the other cases. It is thus
seen that by using a super block representation, much fewer
integer variables are needed. Similar tricks can be applied to
other cases in our integer formulation, for example, where
the two main trunks of a net always intersect and can be
considered as a super block.
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