
1718 IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 1, NO. 11, NOVEMBER 2011
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Induced Signal Degradation in 3-D System
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Abstract— In this paper, we present a methodology for charac-
terization and repair of signal degradation in through-silicon-vias
(TSVs) in 3-D integrated circuits (ICs). The proposed structure
can detect the signal degradation through TSVs due to resistive
shorts in liner oxide and variations in resistance of TSV due to
weak open and/or bonding resistance. For TSVs with moderate
signal degradations, the proposed structure reconfigures itself as
signal recovery circuit to maintain signal fidelity. This allows
electrical repair of TSVs with moderate defects leading to better
design yield and system functionality. This paper presents the
design of the test and recovery structure and demonstrates their
effectiveness through stand alone simulations as well as in a full-
chip physical design of a 3-D IC.

Index Terms— 3-D integrated circuit, signal integrity, test,
through-silicon-via.

I. INTRODUCTION

THE functionality of a 3-D integrated circuit (IC) strongly
depends on the fidelity of signals through through-silicon-

vias (TSVs) [1]–[2]. As the TSV process is not a perfect
one, defects can be created while forming the TSVs before
bonding (assuming a via-first process) or while bonding
different dies together [3]–[12]. The defect can be created
by short through the oxide surrounding the TSVs resulting
in finite resistance between TSV and substrate. The open
defects or ruptures can also be created during TSV growth
[3]–[12]. The non-conformal growth of the insulator also
creates defects or variation in TSV properties [3]–[12]. At the
post-bond stage, the defects can be created due to variation
in the resistance of the bonding material or misalignment. A
short through the oxide creates a resistive path through the
oxide to the surrounding substrate and hence ground (assuming
the substrate is grounded, Fig. 1). Likewise the open defect,
variation in bonding resistance, and TSV misalignment impact

Manuscript received July 27, 2011; revised August 3, 2011; accepted
August 5, 2011. Date of publication September 19, 2011; date of current
version November 8, 2011. This work was supported in part by the National
Science Foundation, under Grant CCF-0917000, Semiconductor Research
Corporation, under Grant 1836.075, Intel Corporation, and IBM Faculty
Award. Recommended for publication by Associate Editor M. Nakhla upon
evaluation of reviewers’ comments.

The authors are with the School of Electrical and Computer Engi-
neering, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: mcho8@gatech.edu; chang.liu@gatech.edu; daehyun@gatech.edu;
limsk@ece.gatech.edu; saibal@ece.gatech.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCPMT.2011.2166961

the resistance through a TSV. When the TSV is driven by
a driver, the signal swing and/or slew at the receiver end
can vary significantly due to short/open defects resulting in
either complete or partial signal degradation. The complete
degradation results in no signal propagation through TSVs and
is caused by strong short/open. The weak short/open results
in partial degradation i.e., signal can propagate through the
TSV but with degraded amplitude/slew. Since maintaining the
signal fidelity through TSVs is a primary requirement for 3-D
system integration, it is imperative that characterization of the
electrical impact of the TSV defects/variations is critical.

Testing and characterization of the TSVs have signifi-
cant challenge, particularly before bonding (pre-bond-test)
[3]–[12]. The TSVs are too small for test probe and one cannot
afford to include a large number of probe pads for testing.
The pre-bond test structures also need to satisfy additional
requirements. First, the structures should be designed to be
able to characterize TSV defects after bonding. Second, the
test structures should be able to function as signal recovery
circuits to recover the degraded signal at the receiver end of
the TSV. This will allow electrical repair of the TSVs with
weak defects to maintain system level signal fidelity and help
to improve design yield. Third, distinguishing between weak
and strong defects requires testing for the analog properties
of TSVs. It is important that test structures should be able to
create digital signatures of the analog nature of the defects.
The digital signatures need to be stored on-chip and later
read-out for test, characterization, and recovery. Finally, the
power, performance, and area overhead associated with the
built-in test structures need to be analyzed considering full-
chip analysis of a 3-D IC.

The pre-bond test-structures for detecting resistive shorts
and opens have received limited attention in recent literatures
[9]–[12]. Tsai et al. has discussed detection of pin-holes
defects in TSVs by using circuits to measure TSV resistance
[9]. Chen et al. has proposed to measure the RC time constant
of TSVs and compare that with the known values to determine
the existence of faults [10]–[11]. However, to the best of our
knowledge, there is no prior work that presents on-chip circuit
that can simultaneously detect weak/strong defects in TSVs
during pre-bond and post-bond test and if required, performs
signal recovery under non-catastrophic failures in TSVs.

In this paper, we present an integrated on-line test and
signal recovery structure and associated design/test methods to

2156–3950/$26.00 © 2011 IEEE
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Fig. 1. Schematic illustration of TSV shorts at the pre-bond stage (top) and
variation in the resistance at the post-bond stage (bottom).

simultaneously characterize TSV defects and maintain signal
fidelity through TSVs. We present a low-overhead digital
test structure based on scan flip-flops (FFs) that detects the
resistive defects in TSVs and characterizes them as in one
of the following groups: 1) bad TSVs with complete sig-
nal degradation; 2) repairable TSVs with moderate signal
degradation and can be recovered with additional circuit; and
3) good TSVs with high signal quality. The test structure is
designed to be able to characterize resistive shorts through
oxide before bonding and resistance variation in the TSV path
after bonding. The proposed test circuit reconfigures itself as
a signal recovery circuit to repair TSVs with moderate pre-
bond or post-bond defects and improve the fidelity of the
signals passing through them. The efficiency and overhead of
the proposed test structure is studied considering full-chip 3-D
physical design of an example circuit.

The rest of this paper is as follows. Section II discusses
the electrical effects of TSV defects, Section III presents
the proposed test and signal-recovery structure, Section IV
presents the simulation results, Section V presents the full-chip
analysis of an example 3-D system, and Section VI concludes
this paper.

II. ELECTRICAL EFFECTS OF TSV DEFECTS

In this section we present the electrical impact of the TSV
defects on the signal quality. Fig. 2(a) shows a typical scenario
where a TSV with a short defect is driven by an inverter in
one die and the signal is received by another inverter on the
second die. Consider variation in the resistance of the short
due to variation in the diameter of the short. The voltage
at the receiver end can vary resulting in either complete or
partial signal degradation. Based on the extent of the signal
degradation, we partition the TSVs in three categories. If a
low resistance short exists, VTSV will be very low. We refer to
this as un-repairable or bad TSVs. The TSVs for which VTSV
is very high (>90% VDD) are considered to good or defect-
free TSVs. We also define a third category of TSVs, referred
to as repairable TSVs. The repairable TSVs correspond to
the TSVs that have shorts with moderately high resistance
such that signal degradation is within an acceptable limit (e.g.,
within 50% of VDD). The receiver end of such TSVs makes
logical transitions between ‘0’ and ‘1’ but with a reduced
voltage swing. A lower voltage swing leads to higher noise
susceptibility, short-circuit power, and delay at the receiving
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Fig. 2. Effect of TSV short (a) driver-receiver combination, (b) signal swing,
(c) delay, and (d) driver & receiver power.
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Fig. 3. Post-bond TSV resistance (a) driver-receiver, (b) effect on signal
swing, (c) signal slew, and (d) signal delay.

gate as illustrated in Fig. 2. It can be observed that for very
high resistance of the shorts (i.e., good TSVs), the signal swing
is close to ideal [Fig. 2(b)]. As the resistance reduces the signal
swing also gradually reduces [Fig. 2(b)] resulting in corre-
sponding increase in delay through the TSV [Fig. 2(c)] and
average power of the driver/receiver combination [Fig. 2(d)].
The TSVs with such intermediate resistances of the short
belong to the repairable TSVs category. We refer to them as
repairable because if the signal swing can be recovered at the
receiver end, these TSVs will function correctly (although,
possibly with a higher delay than the good ones). If the
resistance is very low, the signal fails to make transition.

Fig. 3(a) shows a scenario where resistance variation can
occur between TSV and receiver/driver due to weak open,
misalignment, and bonding resistance. We collectively model
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the combined effect as variation in net TSV resistance. For
small variation in this TSV resistance, the signal swing is close
to ideal. As the variation increases, the signal swing through
the TSV starts to reduce and eventually the TSV fails to func-
tion properly. Hence, variation in the TSV resistance degrades
signal swing [Fig. 3(b)], impacts signal slew [Fig. 3(c)], and
increases the delay of signal through TSV [Fig. 3(d)].

III. TEST AND SIGNAL-RECOVERY STRUCTURE FOR TSV

In this section we discuss the proposed test and signal-
recovery structure and its operating principle. The driver and
the receiver across a TSV reside at two different tiers after
bonding. Hence, during pre-bond test, our aim is to design a
test circuit that can mimic the voltage degradation through the
TSVs. But the test structure needs to perform this by using
all devices in the same tier. The objective of the proposed
test structure is to first place individual TSVs in one of
three categories during the pre-bond test: bad, repairable, or
good. If a bad TSV exists (assuming non redundant TSVs),
the die is detected as a faulty one and not used during
bonding thereby adding to yield degradation. However, for
the repairable TSVs, the test structure reconfigures itself as
a signal recovery circuit during post-bond normal operation.
This reduces the overall yield degradation at the expense of
marginal delay and/or power overhead. For the good TSVs,
the test structure allows direct signal transfer from the driver
to the receiver without signal recovery. After bonding, the
test structure re-tests individual TSVs to capture the effect
of variations in resistance of TSV. Note the test structure for
repairable TSVs continues to operate in the recovery mode
even after bonding. But even if a TSV is detected as defect-free
during pre-bond test, if the variation in the resistance of that
TSV is very high after bonding and causes signal degradation,
the test structure for that TSV reconfigures itself to a signal
recovery circuit.

A. Basic Structure and Operating Principle

1) Pre-Bond Test Mode for Input TSV: A TSV-test-inverter
(TTI) is connected to each TSV (Fig. 4). During testing the

input of the TTI is held low. This forms a resistor divider
structure between the p-channel metal-oxide-semiconductor
(PMOS) resistance of the TTI-inverter and the resistance of
the TSV short. The resistances of the short (Rshort) and the
TTI determine the voltage at the TSV-TTI junction (VTSV).
Depending on the value of the Rshort, the VTSV will vary.
This VTSV is next compared against a reference voltage
and sampled into a scan FF connected to the comparator.
The reference voltage is selected such that it represents an
“acceptable” signal quality (e.g., >50% of VDD). The TSVs
with low resistive shorts have VTSV values less than the
reference voltage while the defect-free TSVs have very high
VTSV. The output of the comparator connected to the TSV
captures the extent of the short in that TSV in a digital ‘1/0’
form. The values stored in the scan FFs are scanned out to
locate the faulty TSVs at the end of the test. If such TSVs
exist the die is categorized as a faulty one. The above test is
performed again but with a higher reference voltage (∼90%
of VDD). The scan FFs which indicate faults with this high
reference voltage corresponds to repairable TSVs.

2) Signal Recovery During Normal Operation (Input TSV):
For the repairable TSVs, the test circuit reconfigures itself
to connect the output of the comparator to the input of the
logic gates (instead of directly using the TSVs) during normal
operation. The comparator is designed such that during normal
operation it functions as a level converter circuit and recovers
the signal degradation. As for the input TSVs, the test circuit
resides between TSV and the input logic gate.

3) Pre-Bond Testing and Signal Recovery for the Output
TSV: The test structure for pre-bond testing of an output
TSV is similar to that of an input TSV and uses the same
test/reconfiguration circuit. The TTI is connected to the TSV
and the VTSV is sampled by the test circuit. The basic
operating principle is also similar. The only difference is that
instead of an output multiplexor (MUX), here we need to
extend the input MUX to multiplex VTSV, scan in (SI), and
the logic output. The primary difference in this case is that
the signal recovery needs to be performed in the second die
[Fig. 5(a)]. This requires re-running the TSV test after bonding
where the TTI drives the bonded TSV. The VTSV developed
at the receiver end in the second die is compared against the
threshold to activate or deactivate the signal recovery.

4) Post-Bond Testing and Signal Recovery: Along with the
short defects in the TSVs, the effective resistance of the TSV
can also vary due to weak open, resistance of the bonding
material, or misalignment during die-bonding. The proposed
test structure is also used to characterize variations in the
resistance of TSV and if required perform signal recovery
[Fig. 5(b)]. Note if a TSV is detected as a repairable one in
the pre-bond stage, it is automatically configured in the signal-
recovery mode. Further, as such TSVs have moderate short, the
voltage developed at the TSV end varies with a change in the
resistance of the TSV. Hence, our test approach is to activate
the TSVs from the driver layers and sample the TSV voltage
at the receiver layer using the proposed test circuit. However,
for good TSVs with very high resistive short, a variation in the
resistance of TSVs is not reflected in the DC voltage change
of the TSVs. This is because the TSV is connected to the gate
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of a device in the receiver end therefore there is no current
path to ground. To enable the characterization of variation in
the resistance of TSVs in such scenarios we propose to assign
TSV_TEST = 1 for the TTI in the receiver tier. This activates
the n-channel metal-oxide-semiconductor (NMOS) device in
the TTI in the receiver end and creates a current path from
the driver in die 1 to the ground. The NMOS is designed
with long channel (or multiple NMOS in series) to ensure the
voltage drop across the NMOS is very high if variation in the
TSV resistance is very low. Otherwise VTSV varies depending
on the variation in the resistance. We sample the developed
VTSV into the test circuit to detect whether the variation in
the resistance of TSVs is higher than a given limit. A high
variation in resistance degrades the signal slew (for defect-free
TSVs) and signal swing (for TSVs with short of moderate
resistance) (see Section IV for simulation results). If for a
TSV, a low VTSV is developed during this test, we activate the
signal recovery circuit to improve the signal swing and slew.

5) Integration with Scan Architecture for Pre-Bond
Test: This paper primarily focuses on the TSV test. However,
we would like to note that the scan FFs used in the TSV
test can also perform as a scan chain for pre-bond logic test
[Fig. 5(c)]. This enables one to perform pre-bond functional
tests on the partial circuits in each die [6].

B. Detailed Design of the Test and Recovery Circuit

Fig. 6 shows the detail circuit schematic of the proposed
test structure and Fig. 7 shows the control signals and the
methodology for performing the test. We explain the operation
considering the pre-bond test condition. Note the scan FFs
used in the test structure do not function as a FF during
regular operation. The heart of the proposed structure is a
differential sense-amplifier-based FF. The FF is designed only
with the PMOS latch [instead of a complementary metal-
oxide-semiconductor (CMOS) based] to allow it to function
as a level converter during regular operation. We multiplex the
scan input and the TSV input. The select signal of this MUX,
referred to as SCTRL in Fig. 6, controls whether the TSV input
or the scan input is applied to the input of the differential latch.
Since this MUX needs to transfer the TSV voltage during TSV
test, we design this using a transmission gate-based MUX. The
output of this MUX (referred to as IN_A in Fig. 6) forms the
one input of the differential latch. The second input of the
differential latch (referred to as IN_B in Fig. 6) is obtained
by multiplexing the reference voltage (Vref) and the inverse of
IN_A. This is designed as a tri-state inverter-based MUX with
Vref as the supply voltage. During scan in or regular operation,
the inverse of IN_A is connected to IN_B. During the TSV
test, the signal TT is high which ensures IN_B is equal to
Vref . During scan in or signal recovery mode, TT is low which
ensures the inverse of IN_A is applied to IN_B (Figs. 6 and 7).

While operating as a FF during TSV test and scan in/out
mode, the enable signal (referred to as SCLK in Fig. 6) of the
differential latch is the scan clock signal. However, for signal
recovery, SCLK is held high so that the circuit behaves as
a level converter. This can be achieved by multiplexing VDD
and the scan clock. The selection can be achieved using TT
and SCTRL. Note the SCLK generation circuit is a global one
shared by all test circuits.
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The output selection logic is designed to ensure that the
logic input is equal to: 1) the output of the scan FF during
pre-bond logic test; 2) the output of the comparator for
TSVs requiring signal recovery in the operating mode; and
3) directly connected to the output of the TSVs for good TSVs
in the operating mode. This can be achieved by multiplexing
the three outputs. The control logic for the multiplexor is
shown in Figs. 6 and 7. Note that the select signal that
differentiates between scan mode and regular mode is shared
by all test circuits. However, during operation one needs to
differentiate between direct TSV connections and comparator
connection which is a local signal. We achieve this by re-using
the NAND latch connected to the sense-amplifier-based FF to
store the local requirements of the TSVs (Fig. 7).

IV. SIMULATION RESULTS

In this section, we present simulation results to verify the
functionality of the proposed circuit.
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A. Application to Pre-Bond TSV Tests and Signal Recovery

1) Verification of Functionality: Fig. 8 shows the waveform
of operation of the proposed circuit demonstrating VTSV detec-
tion and signal recovery. It can be observed that the proposed
circuit can successfully detect the VTSV value [Fig. 8(a)
and (c)]. In the recovery mode, the proposed circuit can
successfully recover the low voltage swing [Fig. 8(b) and (d)].
We next consider statistical simulation of variation in the
diameter of the short. We consider a log-normal variation
in the short diameter (Fig. 9). The resistance corresponding
to different short diameters is computed considering copper
TSV. As expected, the variation in the short diameter results
in a variation in the resistance of TSV shorts. The resistance
variation results in a variation in the voltage at the TTI-
TSV connection (i.e., VTSV). The proposed test structure
successfully detects whether the shorts corresponds to a bad,
repairable or good TSV.
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Fig. 10. Sources of detection inaccuracy obtained using Monte–Carlo
simulations in 90 nm CMOS (a) VTSV variation, (b) detection error,
(c) effect of offset variation, and (d) driver-TTI mismatch.

2) Factors Affecting Detection Accuracy:
a) Process variations: We first optimize the design

to reduce the offset by proper device sizing. The SPICE
Monte–Carlo simulation is performed considering the internal
variability model for the IBM 90 nm technology [13]. The
variability model simultaneously considers variations in all
process parameters (such as L, W, and Vth, etc.). Due to the
variation in the strength of the PMOS transistor in the TTI,
the generated VTSV for same short resistances can vary as
shown in Fig. 10(a). This adds to the variation in the offset
voltage of the differential latch due to device and output
load mismatch. Considering these variations we compute the
misdetection probability. We consider the random variations
in the short diameters (hence, resistances) for TSVs. For each
such TSV case, we perform 1000 Monte–Carlo simulations
considering the random process variations and observed
whether the TSV is detected as the good, repairable or bad.
For each such TSV finally we compute the total probability
of detecting it as good/repairable/bad and plot it against the
short resistance. The detection probability should be a step
function in the ideal case. However, due to finite offset there
exists a misdetection probability but it is within an acceptable
limit [Fig. 10(b)]. Next, we vary the standard deviation of
the offset distribution and consider 1000 instances in a 3-D
die with ∼1500 TSVs. For each such instance we randomly
assign the TSV short diameter (and resistance) and perform
the detection. The total numbers of TSVs that are incorrectly
detected as repairable or good ones are computed for each
die instance as a percentage of the total number of TSVs. The
average of this value over the 1000 die instances is plotted
in Fig. 10(c). It can be observed that the average percentage
of misdetection error in detecting bad TSV as repairable or
vice-versa is very low. This misdetection error is marginally
higher for detecting good ones as repairable (or vice-versa).
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pre-bond yield.

b) Variation of the driver strength: In a real 3-D
system, the drivers of each TSV are not identical. Hence,
the extent of the signal degradation estimated with a fixed
TTI (referred to as VPredicted) may not exactly correlate with
the actual signal degradation (referred to as Vactual). This is
illustrated in Fig. 10(d) for different random driver sizes but
fixed TTI (referred to as ‘random pair’). This is obtained
through multiple Monte–Carlo simulations considering
random variations in short resistance and process parameters.
However, the size of the drivers of each TSV is known after
the design and full-chip placement/routing of the 3-D chip.
We propose to use this information to match the size of the
TTI for each TSV with the size of the actual driver of that
TSV in the different dies (or same die for output TSVs).
As expected, such a matched pair can significantly improve
the correlation between the predicted and the actual signal
degradation. The marginal difference can still exist because
of the random process variations [as shown in Fig. 10(d)].
The above observation indicates that physical design
aware synthesis of the TTI helps to improve the detection
accuracy.

c) Signal recovery and TSV limited functional yield: We
next study the effectiveness of the pre-bond TSV test and
signal recovery on the yield enhancement (Fig. 11). We
consider the offset distribution obtained from SPICE sim-
ulation. We generate 1000 random instances of a 3-D die
with 1500 TSVs and different short resistances. The TSVs
are grouped using the proposed circuit in bad/repairable/good
groups and if required signal recovery circuit is activated. A
die is considered faulty if there exists any TSVs with signal
swing <1 V (with or without signal recovery). As expected,
with an increase in the variance in the short diameter, the
number of good TSVs reduces while that of repairable or bad
TSVs increases in Fig. 11(a). This results in yield degradation.
The use of signal recovery can improve the TSV yield and
allow a circuit to function with less control in the TSV process
as shown in Fig. 11(b).

B. Application to Post-Bond Tests and Signal Recovery

We next study the effectiveness of the proposed circuit in
post-bond test and characterization of TSVs. After bonding the
test structure is re-activated to detect VTSV. For the post-bond
test, the driving inverter is in one tier and VTSV is sampled
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by the test circuit of the other tier. If a particular TSV under
test has appreciable Rshort (i.e., a repairable TSV), the voltage
level at the TSV output degrades naturally. For such TSVs
signal recovery circuit is activated anyway based on the pre-
bond test outcome. Detecting post-bond resistance variation is
particularly challenging for the TSVs with no oxide short (i.e.,
“good” TSVs). Fig. 12(a) illustrates that the proposed circuit
detects signal quality even for the good TSVs by activating
NMOS of TTI. We observe that VTSV reduces as the post-
bond TSV resistance increases. We further perform statistical
simulation to verify the functionality of the post-bond test
[Fig. 12(b)]. Variation in post-bond TSV resistance results in
variation VTSV. Depending on the level of VTSV proposed
detection circuit successfully group TSVs as bad, repairable
and good after bonding.

We now analyze the effectiveness of the signal recovery
to correct against post-bond resistance variation. As shown in
Fig. 13(a) and (b), the signal swing and the signal slew degrade
significantly with an increase in the post-bond TSV resistance.
We observe that the activation of the recovery circuit improves
both the signal swing and the signal slew. Fig. 13(c) illustrates
that a higher post-bond TSV resistance increases the signal
delay. With recovery we can achieve a smaller delay compared
to no recovery through TSV, particularly, for high post-bond
TSV resistance. The delay improvement is primarily because
of the reduction in signal slew as a higher signal slew increases
the delay of the following logic gate. Our simulations have
shown that when we bypass the signal recovery circuit for
good TSVs, the slew at the input of the receiver degrades from
∼14% of clock high-time to ∼17% clock high-time. This is
primarily due to the resistance of the transmission gate at the
output MUX.

V. SYSTEM LEVEL FULL-CHIP ANALYSIS

We analyze the overhead of the proposed test structure
considering 3-D full-chip physical design with the 45 nm free
PDK technology model [14] and cell libraries.

A. Target 3-D Structure and Design Flow

We use FFT256_8 design [15] to demonstrate our exper-
iment on 3-D circuit. The target 3-D structure is shown in
Fig. 14(a) where the two dies are stacked in a face-to-back
fashion with via-first TSVs. The TSV structure is also shown
in Fig. 14(a).

The 3-D physical design flow [16], [17] is shown in Fig. 15.
First, a min-cut practitioner is used to partition the top level
design into two dies. Each cut becomes a pin in each die,
which corresponds to a TSV. Next, we place TSVs and
standard cells sequentially. We convert the TSV pins to TSV
standard cells which we define in the physical library. Then
we place the TSV cells and standard cells together in the first
die using the predefined pin locations as constraints. After
placement, we change TSV standard cells back to TSV pins
to do routing and optimization. For the second die, we get the
TSV landing pad locations from the previous die. With these
locations as constraints, we perform placement and routing.
The following steps are the same as in the first die. After all
the designs are done, we perform 3-D timing analysis. We
generate the top-level Verilog file containing these two dies
and a SPEF file for TSV parasitics. Primetime reads Verilog
files and SPEF files in incremental modes, and generates a
stitched SPEF file containing the RC information of both two
dies and the TSVs. Then we perform timing analysis on the
stitched files. Fig. 14(b) shows the die shot of the two layers.
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Blue squares in die1 show the TSV M1 landing pads, and the
pink squares in die2 show the TSV M6 landing pads. The total
number of TSV is 1444. The area per die is 1.08 × 1.08 mm2.

B. Delay and Power Impact of TSV Test Circuits

We consider the application of the proposed test circuit on
the designed 3-D system. We first redesign the proposed test
circuit in 45 nm PDK technology and verify its functionality.
The physical area of the proposed design in the 45 nm
technology is ∼21 µm2. We add this additional cell to each
TSV in our 3-D design flow to estimate the area overhead.
For area overhead estimation, we have considered different
partition options resulting in different number of TSVs for the
entire 3-D chip. The area overhead was observed to be less
than 4% of the total die area when TSV area is ∼20% of the
die area [Fig. 16(a)].

Next we study the impact of the proposed test/signal recov-
ery circuit on timing and power. SPICE simulation in the
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Fig. 16. Area and delay overhead of the proposed structure from system level
analysis (a) area overhead, (b) delay overhead of the test circuit in different
mode, (c) power overhead of the test circuit in different mode, and (d) tradeoff
of delay and power overhead.

predictive 45 nm node is performed to estimate the delay and
power of the driver, TSV, test circuit, and receiver combination
considering presence/absence of signal recovery. We consider
varying resistance of the oxide short to create good and
repairable TSVs. It can be observed that with the proposed
circuit delay increases marginally for very good TSVs. This
is primarily due to the addition of the transmission gate in the
signal path. But for the repairable TSVs in recovery mode, we
observe a delay reduction through the entire driver–receiver
combination due to improvement of the signal slew at the
receiver input [Fig. 16(b)]. From a power perspective, the
total power remains similar with or without the test-circuit
for good TSVs [Fig. 16(c)]. However, for the repairable TSVs
the total power increases due to the switching in the signal
recovery circuit. A lower short resistance implies a smaller
difference between VINA (=VTSV) and VINB(=Vref) in Fig. 6.
This implies an increased switching time and hence, a larger
short circuit power through the sense-amplifier. However, the
power of the proposed design was observed to be less than a
microwatt even in the recovery mode.

We next extend the timing/power analysis at the system
level. After the timing analysis of the 3-D design is done,
we add the timing degradation caused by the repairable TSVs
and the test circuit. We assume that the random variations in
TSV short resistances (similar to Fig. 9) and add the timing
overhead of the proposed test circuit either in the recovery
mode or in the bypass mode. Based on this assignment we
compute the new delay for the paths that use TSVs. Each
random case of across chip TSV resistance variation represents
a 3-D chip. We vary the percentage of TSVs that are in
the recovery mode from 1% to 50%, and assign different
delay and power overhead values to all the 3-D timing paths
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based on their working modes (i.e., recovery or bypass).
Note the delay/power overhead is computed with respect to
the design where the test and signal recovery circuit is not
added to the TSVs. As shown in Fig. 16(d), the average
delay overhead decreases as the number of TSVs in recovery
mode increases. However, a higher number of TSVs in the
recovery mode increases the power overhead. This is expected
as the test circuit consumes more power in the recovery mode
[Fig. 16(c)]. However, even with 50% of TSVs in the recovery
mode, the chip level power overhead is marginal.

VI. CONCLUSION

In this paper, we have presented a test structure to
detect the effect of TSV defects on the signal quality of a
3-D system. The proposed structure can be used during the
pre-bond test to detect the resistive shorts through oxide
liners. During the post-bond test, the structure can be used
to characterize the effect of variation in the TSV resistance
on signal quality. Depending on the detected signal quality,
the proposed structure reconfigures itself to perform signal
recovery. This allows improving the yield of 3-D system while
maintaining the signal fidelity. The full-chip analysis shows
that the signal quality enhancement can be achieved with only
moderate overheads in chip area, power, and maximum delay.
As the variability and defects in TSVs and bonding process
are major challenges in the 3-D process flow, the proposed
structure can help to improve the functional yield and signal
fidelity in the next generation 3-D ICs.
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