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Abstract—Modern advances in reconfigurable technologies are allowing
analog circuit designers to benefit from the computational flexibility
provided by large-scale field-programmable analog arrays (FPAAs). With
the component density of these devices, small analog circuits as well
as larger analog systems can be synthesized and tested in a shorter
time and at a lower cost compared to the full design cycle. However,
automated development platforms and CAD tools for these devices are
far fewer than the physical synthesis tools for their digital counterparts.
One of the major reasons for this is the considerably higher impact of
interconnect parasitics on circuit functionality in the analog domain;
therefore, performance metrics must be monitored closely. Our goal
in this paper is to present a physical synthesis framework with a
generic architecture specification interface and a parasitic extractor for
verification of the synthesis results. Our synthesis tool can support a
wide range of FPAA architectures and our simulations can successfully
predict the performance metrics.

I. INTRODUCTION

In the fast pace of today’s electronics design world, time to market
has become more crucial than ever. Companies that can effectively
use all available resources to cut the design cycle are getting an edge
against their competitors. Design process, which is inherently itera-
tive, must avoid the costly failures whether incurred as money or time
loss. Furthermore, Application Specific Integrated Circuit (ASIC)
solutions are economically feasible only for high volume products.
These factors made the use of digital reconfigurable systems very
attractive in the form of Field Programmable Gate Arrays (FPGA)
since their introduction in the mid 1980’s. While digital processors
can perform the desired functions, there are many cases where an
analog design can offer the same functionality at a fraction of the
power required for the digital solution [1]. Advances in reconfigurable
analog technologies are allowing field-programmable analog arrays
(FPAAs) to dramatically grow in size, flexibility, and usefulness. With
these advances, analog circuits and systems can be programmable,
reconfigurable, adaptive, and implemented on standard CMOS to
take advantage of scaled CMOS technology. On the other hand,
FPAAs still have not achieved the same success as FPGAs in the
digital domain even with the growing interest, availability, and use of
FPAAs. This results from several factors, including the lack of CAD
tools, small circuit density, small bandwidth, and layout dependent
noise figures. The methods that work for the physical design of
digital circuits in FPGAs may not work very well for FPAAs. The
criteria for a successful design are different and more complex. For
example, signal integrity of an analog circuit is more difficult to
maintain and can severely impact the functionality of the circuit;
therefore, it is of higher priority than achieving the most compact
design. Increased segmentation of wires may result in additional
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capacitances that can result in undesired circuit behavior after routing.
Another challenge to be faced is the fact that parasitic impedances
not only deteriorate the performance as in digital circuits but may
also destroy the functionality completely, which requires monitoring
the impact of parasitics on performance metrics during the synthesis
steps. A placement and routing solution that satisfies all device and
net constraints may not necessarily be a desired one; the performance
often has to be optimized as well.

Various approaches have been taken in implementing structural
and parametric programmability of analog circuits on FPAAs in the
past. A survey paper [2] reviews some of these works in the area
of programmable analog and mixed-signal circuits. Recently, use
of fine-tunable floating-gate transistors in the switch fabric allowed
development of large-scale FPAAs; where switches are used not only
for routing, but also for component biasing and as computational
elements by themselves [3], [4]. Most existing CAD efforts for
FPAAs in the literature focus only on small-scale, switch-capacitor-
based designs [5], [6], [7].1 On the other hand, [3] and [8] use 32
to 72 Computational Analog Blocks (CAB), necessitating a more
scalable approach to handle the increased complexity. The work in
[9] addresses this need for [3] or similar topologies; however, more
generic tools are required to catch up with ever changing and improv-
ing FPAA architectures. This work addresses this need and presents
a tool that we call as Generic Reconfigurable Array Specification and
Programming Environment (GRASPER) to support a wide range of
FPAA topologies without compromising on the placement and routing
quality. In addition, special challenges resulting from the unique use
of floating-gate switches as computational elements are addressed.

II. GENERIC RECONFIGURABLE ARRAY SPECIFICATION AND

PROGRAMMING ENVIRONMENT (GRASPER)

A. Input Circuit Interface

In digital circuits, each signal can be driven by the output of a
single gate since gate outputs cannot be connected together. Popular
netlist formats such as BLIF reflects this limitation well. Analog
circuits don’t have such a limitation; it is not uncommon to connect
the output pins of an output transconductance amplifier (OTA) to
the output pin of another OTA. Assignment of input/output pins
become even more vague when it comes to basic components such as
transistors and capacitors. Therefore, SPICE netlist format was found
more suitable for analog circuit description and is used to create input
files for our tool. SPICE is a widely used EDA tool and is already
familiar to a large community of analog designers [10]. Full SPICE
compatibility of input circuits allows simulation of designs using the
available SPICE distributions as well.

1Anadigm, a leading commercial FPAA vendor, is currently supplying
FPAAs with 4 (2×2) simple switch-capacitor based CABs.
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The placement phase can accept circuits that use only the available
FPAA components, so input netlists are limited to components
from a list of subcircuits that correspond to the FPAA components.
Subcircuit descriptions for FPAA components are maintained in
a technology library, so new component types for future FPAA
architectures can easily be supported. GRASPER input interface
allows nested subcircuit descriptions for larger system specifications
with the requirement of having FPAA components as the lowest level
netlist entry. To enter GRASPER commands that are incompatible
with SPICE, a special text sequence that can be treated as a comment
line by SPICE is used: ”∗ >>”. Each circuit element and signal
node in the input netlist is stored as a graph vertex (cell) and a
hyper-edge (net) in an undirected graph. The point where a net is
connected to a cell is modeled as a pin. Figures 1a and 1b depict
the equivalent graph representations of various circuit elements and
a circuit block. A sample SPICE netlist is presented in Figure 1c.
Once a circuit is captured as a graph, the objective is to map each
graph cell (i.e., circuit component) to an actual component on the
target FPAA architecture and determine the switches that define a
path between pins that need to be connected.

Fig. 1. Graph representation of (a) circuit elements, and (b) a complete circuit
with input and output pins, along with (c) corresponding SPICE netlist.

B. Generic Architecture Specification in GRASPER

The placement and routing tool in [9] supports the architectures de-
scribed in [3]. The changes introduced with new FPAA architectures
[8] and possible future architectures to follow dramatically increase
the routing possibilities; making it impossible to use the routing
resource graph (RRG) and the simultaneous placement and routing
method of [9]. Therefore, GRASPER uses a RRG model that depends
on capturing the wire-switch relationship as a vertex-edge pair in
a simple undirected graph as illustrated in Figure 2a. In a simple
undirected graph, edges can exist between two and only two distinct
vertices while any number of edges can be connected to a vertex,
which reflects the relationship between physical wires and switches
perfectly, as each switch has to exist between two and only two wires,
and wires don’t have a limitation on how many wires they can connect
to via switches. Figure 2b shows how each component pin is paired
with a RRG vertex that corresponds to a physical wire connected to
the same component pin in the actual FPAA. This is a simple yet
effective model that allows many algorithms to be employed easily
for placement and routing. As an added benefit, it can be used to
specify arbitrary connections via device configuration files allowing
most FPAA architectures that use switches as continuous-time pass
gates (switched capacitor-based architectures not supported).

A similar model has been used in wireC [11], the triptych FPGA
placement and routing [12], and VPR [13]. Since VPR uses a similar

Fig. 2. GRASPER routing resource graph (RRG) fundamentals. (a) Wire-
switch relationship on a reconfigurable architecture. GRASPER uses a model
where wires are represented as vertices and switches are represent as edges.
(b) Wire-component pin connections in GRASPER. This model allows in-
stant determination of terminal wires (source/sink) for routing immediately
following the placement of a cell.

RRG model in its core, it also offers flexibility in supported architec-
tures. However, it is designed primarily taking FPGA architectures
into account, so does not really use the potentials of the RRG to
its full extent. Degrees of freedoms granted when designing the
interface took only the cases one would encounter in FPGA design.
Although heterogeneous component support, which consists of only
additional digital components such as memory and multiplier, was
added recently, VPR has only digital delay calculation models rather
than transistor level simulation support, and can’t support the CAB
types we need. VPR allows only a regular rectangular array of one
block per each grid on a regular 2-dimensional array. VPR input
interface allows blif and verilog formats; these formats, as already
discussed in Section II-A, are not suitable for effectively describing
analog circuit netlists. The range of interconnect topologies and CAB
array geometries GRASPER interface supports are wider. Although it
was not the main objective initially, it is possible to extend GRASPER
to place and route digital circuits as well, but VPR can’t support
analog circuits.

C. Placement in GRASPER

Because of the increased wire type variety, placement results no
longer enforce a unique routing solution in GRASPER. Therefore,
placement and routing are divided into separate steps again.

GRASPER placement uses the MHEC-based cell ordering that
was also used in [9] to maximize the possibility of local wire use
for routing. Unlike [9], GRASPER lets only the components that
match the cell type to be visited directly rather than the CABs. Each
component that is feasible for placement is ranked for placing the
current cell, and the highest rank component is selected for placement
after all components are visited.

Pins of CAB components are associated with wires that are
connected to the routing resource graph as depicted in Figure 2b.
Therefore, once a cell is placed into a CAB component, net informa-
tion is also transferred to these pin wires. As pins of a net are placed
on various locations on the chip surface, a bounding box called as a
netbox, begins to form defined by the positions of the wires associated
by this net. The larger a net’s netbox becomes, the more distance is
likely to be traversed by the wires in the routing phase. In addition,
since larger netboxes may occupy more routing resources, they may
also increase the chances of congestion. This concern brings another
placement objective, which is the minimization of the sum of netbox
sizes.

The quality of the placement results can be influenced in a certain
direction to achieve different goals. Depending on the placement
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priorities, candidate components can be awarded or penalized in dif-
ferent ways during the ranking process. In the current implementation
of GRASPER, increased CAB utilization is aimed and awarded. For
a different case, this may not be an important issue and a different
placement objective can be awarded.

D. Routing in GRASPER

When placement is complete, terminal wires for the circuit nets
are determined as the wires connected to the component pins each
net is associated with. The objective in routing is to find disjoint
minimum spanning trees (MST) within the RRG for all nets where
each terminal of a net is also a member of that net’s MST. The routing
for a sample MST on an undirected graph is illustrated in Figure 3.

Fig. 3. Grasper routing on the undirected routing resource graph. Source and
sink terminals for each net are determined at the end of placement, routing
establishes a minimum spanning tree that connects all terminals together.

GRASPER routing uses the maze router approach based on
Dijkstra’s shortest path algorithm [14]. Maze router guarantees a
minimum distance path between two terminals if a path exists.
Its weakness is the large memory demands and time consuming
operation because of the tendency to radiate toward all directions
from a source terminal; however, the limited number of the routing
resources and their connections alleviate this effect for the recon-
figurable arrays. In addition, the wires corresponding to the vertices
in the RRG correspond to longer distances than the equivalent grids
in the full custom design, resulting in reduced number of layers or
wavefronts that are created at every propagation. This simple method
works effectively in GRASPER.

GRASPER routing algorithm consists of two basic steps. In the first
step, wires are labeled with their effective distances from a source
terminal. This distance can be a cost value that reflects the wire
parasitics, such as the number of switches on a wire in our case. The
first layer consists of the source terminal only, which is chosen to be
the terminal closest to the center of the netbox so that the number of
propagations in RRG can be minimized. All vacant wires (i.e. wires
that are not used for routing another net) that are connected to the
current layer of wires are labeled and added to the next layer of wires.
This process is repeated until all terminal wires are labeled.

The second routing step is backtracing through the minimum label
wires from the sink terminals to the source terminal. Each wire
that is visited during the backtracing is added into the routing path.
Backtracing is applied to one sink terminal at a time. Once a routing
path is established between the source terminal and the first sink
terminal, backtracing the remaining sinks continue until any wire
that was previously added to the routing path is encountered.

As mentioned in Section II-C, congestion can cause problems when
routing a net. To reduce the chances of net congestion, netbox sizes
are minimized during the placement phase. The order nets are chosen
for routing also affects the success of routing. If nets that have larger
netboxes are routed first, chances of congestion will increase for the
subsequent nets. To avoid this, nets are listed in ascending order of
size of their netboxes and routed in this order.

In development of GRASPER, specific requirements of the
floating-gate based FPAA architectures as well as the opportunities
presented by them were also addressed. Traditional switches can
be programmed to either on or off positions, whereas floating-gate
switches can be programmed to transmit different current values,
which correspond to intermediate levels between on and off positions.
This unique ability allows use of switch fabric as computational
elements in the form of switch elements (SWE) [4]. Physically,
A SWE is a routing switch that connects two distinct nets and is
programmed to the characteristics desired by the user. In the circuit
graph, a SWE is a two-port element associated with a current value
connected between two nets. GRASPER can recognize SWEs in the
circuit description, and map them to the switch fabric. Since SWEs do
not correspond to physical CAB components, they can not be placed
during the placement phase. SWE mapping takes place during the
routing phase, after routing of all nets in the circuit are complete
(except SWE routing, of course). Routing a SWE is establishing a
routing path between two disjoint MST of two different nets.

Parasitic capacitances contributed to the circuit by the routing
interconnects can be major obstacles to meeting most design spec-
ifications. The logical objective in routing would be minimization
of wire and switch capacitances to reduce the impact on the circuit
performance. On the other hand, capacitors are often used as analog
circuit elements, and capacitance contributed by interconnects can be
utilized for this purpose as well. This approach not only helps to
meet the design objectives but also reduces the demand for on chip
drawn capacitors saving much area. GRASPER assigns each net a
target capacitance value equivalent to the capacitance between that
net and ground as specified in the circuit netlist. After routing each
net, total capacitance of wires on the net are computed, and CAB
capacitors are added to the net while net capacitance is below the
target capacitance.

E. Parasitic Extraction in GRASPER

GRASPER can also extract the parasitic resistances and capaci-
tances contributed to the circuit by adding non-ideal routing wires
and switches. Each interconnect is modeled as a subcircuit block
which has as many pins as the associated net has. The interconnect
subcircuit is constructed using wire segments, which are undivided
portions of wires bounded by either an end of the wire or an on
switch which connects the wire to another wire, setting the number
of wire segments to one more than the number of programmed
switches (on-switches) on each wire. Each wire segment is extracted
using the information of the wire resistivity, wire capacitance and the
capacitance contributions of the off-switches on the wire segment.
For accuracy, wire segments are also divided into smaller segments
between the grids that a switch may take place, and an RC chain
is constructed for the whole segment to account for the distributed
parasitic effects. This results in a more accurate network, which
comes at a high computational cost for simulators. Applying model
order reduction techniques solve this problem by reducing the circuit
complexity by preserving a level of accuracy that can be set by the
user [15]. Wire segments are connected to other wire segments or
the enclosing interconnect subcircuit pins either directly or via the
on-switches. On-switch models are also provided in a technology file
and can be modified for a trade-off between accuracy and complexity
by editing the model.

III. GRASPER PLACEMENT AND ROUTING RESULTS

One of the goals in developing GRASPER was to make it indepen-
dent of a particular architecture, so that different FPAA architectures
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exhibiting variations in their wire and CAB topologies can be
supported in the future without major updates to the tool. Therefore,
we tested 5000 architectures similar to RASP2.8 [8] by varying the
number of components and wires, switch matrix densities, and wire
segmentation levels. An 8th order butterworth GmC filter was placed
and routed on each of these architectures. Parasitic impedances were
also extracted to observe the impact of placement and routing. Among
these 5000 architectures, 4747 (94.9%) were routed successfully and
4715 (94.3%) demonstrated low-pass filtering functionality with a
reasonable deviation from the target frequency response. Simulation
results for this experiment are presented in Table I.

TABLE I
PERFORMANCE METRICS FOR AN 8TH ORDER LOW-PASS FILTER BEFORE

AND AFTER ROUTING ON 5000 FPAA ARCHITECTURES.
metric ideal mean std

cut-off frequency (fc) [Hz] 9976 10939 1363
pass-band gain (gpass) [dB] 0.585 0.878 0.165
pass-band ripple (rp) [dB] 0.362 3.743 1.683

GRASPER placement and routing results were also tested on an
actual circuit and FPAA, using a RASP2.8 FPAA evaluation board
powered by HP E3610A power supply, and PCI-DAS 4020/12 scope
card to program and measure the response of a 4th order butterworth
low-pass filter that is specified using 8 OTAs and 4 capacitors in the
circuit netlist. Measurement and simulation results are depicted in
Figure 4. In addition to the simulation of the input netlist (pre-pnr),
two different post-routing simulations (post-pnr sim1 & sim2) are
plotted to demonstrate the effect of the simulation models chosen. In
the first case (post-pnr sim1) routing switches are approximated by
a 10 kΩ resistor. In the second case (post-pnr sim2), each routing
switch is modeled using a floating-gate transistor; resulting in more
complex parasitic interconnects. However, the performance metrics
summarized in Table II suggests that this model can simulate the
actual circuit performance more accurately.

Fig. 4. Simulations of circuits that correspond to the input netlist (pre-
pnr sim), parasitic extracted after routing for different routing switch models
(post-pnr sim1 & sim2), and measurement (data points and curve fit) for a
4th order butterworth low-pass filter. Measurements have about 2.5 dB gain,
which has been removed here for comparison purposes.

TABLE II
PERFORMANCE METRICS OBTAINED FROM MEASUREMENTS AND

DIFFERENT SIMULATIONS OF 4TH ORDER LOW-PASS FILTER.
metric pre-pnr post-pnr sim1 post-pnr sim2 measurement
fc [Hz] 13804 11641 8222 8500

gpass [dB] 0.097 0.102 0.059 2.5

IV. CONCLUSIONS AND FUTURE DIRECTIONS

GRASPER is currently being used by various research groups,
and has been used in workshops and student labs for implementing
circuits on the floating-gate based RASP2.8 FPAAs. New architecture
configuration files written to support recently manufactured chips will
be tested soon. The results summarized in Section III demonstrate the
efficiency and effectiveness of GRASPER in supporting a wide range
of FPAA topologies. GRASPER is also flexible to accept different
levels of simulation models by allowing a trade-off between accuracy
and circuit complexity. It finds a good match within the accuracy of
the available models and the limitations of the reconfigurable analog
devices. As more effective models become available, users will be
able to incorporate them into their technology files and improve the
quality of the placement and routing results.
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