
Node duplication and routing algorithms for
quantum-dot cellular automata circuits

W.J. Chung, B. Smith and S.K. Lim

Abstract: Quantum-dot cellular automata (QCA) is a novel computing mechanism that can
represent binary information based on the spatial distribution of electron charge configuration in
chemical molecules. QCA circuit layout is currently restricted to a single layer with very limited
number of wire crossings permitted. Thus, wire crossing minimisation is crucial in improving the
manufacturability of QCA circuits. We present the first QCA node duplication and routing
algorithms for wire crossing minimisation. Our duplication algorithm named fan-out tolerance
duplication (FTD) explores node duplication in conjunction with node placement using K-layered
bipartite graphs (KLBG). FTD successfully removes additional crossings at the cost of increased
area and allows flexible tradeoff between area and wire crossing. Our routing algorithm, namely
cycle breaker (CB), constructs a modified vertical constraint graph (VCG) to enforce additional
vertical relation for wire crossing reduction. We formulate and provide a heuristic solution for the
weighted minimum feedback edge set problem to effectively remove cycles from the VCG. As a
result, FTD and CB achieve wire crossing results that are very close to theoretical lower bound and
outperform the conventional algorithms significantly.
1 Introduction

Nanotechnology and devices will have revolutionary impact
on the computer-aided design (CAD) field. Similarly, CAD
research at circuit, logic, and architectural levels for nano-
devices can provide valuable feedbacks to nano-research
and illuminate ways for developing new nano-devices. It is
time for CAD researchers to play an active role in nano-
research. One approach to computing at the nano-scale is
the quantum-dot cellular automata (QCA) concept that
represents information in a binary fashion, but replaces a
current switch with a cell having a bi-stable charge
configuration. QCA devices can be realised in metal [1],
or with chemical molecules [2]. A wealth of experiments
have been conducted with metal-dot QCA, with individual
devices [1], logic gates [3, 4], latches [5], and clocked devices
[5], all having been realised. This advancement is followed
by various recent efforts in developing CAD tools for QCA
based circuits and systems [6–8].

In this paper, we present the first QCA node duplication
and routing algorithms for wire crossing minimisation. The
goal is to focus on the following undesirable design
schematic characteristics associated with a near-to-midterm
buildability point of QCA circuits: large amounts of
deterministic device placement, long wires, clock skew,
and wire crossings. Our duplication algorithm attempts to:
(1) rearrange logic gates or nodes to reduce wire crossing,

E-mail: limsk@cce.gatech.edu

W.J. Chung is with the Department of Electrical Engineering, Stanford
University, 161 Packard Building, Standford, CA 94305, USA

B. Smith and S.K. Lim are with the School of Electrical and Computer
Engineering, Georgia Institute of Technology, 777 Atlantic Drive NW, Atlanta,
GA 30332, USA

r The Institution of Engineering and Technology 2006

IEE Proceedings online no. 20050278

doi:10.1049/ip-cds:20050278

Paper first received 5th October 2005 and in revised form 23rd February 2006
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006
(2) duplicate minimal number of nodes to further reduce
wire crossing, (3) provide a mechanism for flexible wire
crossing against area tradeoff, (4) further minimise area by
identifying and removing redundant nodes and (5) create
shorter routing paths to logical gates to reduce signal skew.
Our channel routing algorithm constructs a modified
vertical constraint graph (VCG) to enforce additional
vertical relation for wire crossing reduction. We formulate
and provide a heuristic solution for the weighted minimum
feedback edge set problem to effectively remove cycles from
the VCG. As a result, we achieve wire crossing results that
are very close to theoretical lower bound and outperform
the conventional algorithms significantly.

The remainder of the paper is organised as follows:
Section 2 presents problem formulation. Section 3 presents
our QCA duplication and post-process algorithms. Section 4
presents our QCA channel routing algorithm. We provide
experimental results in Section 5 and conclude in Section 6.

2 Preliminaries

2.1 Issues on wire crossing in QCA circuits
Even though theoretical physics tells us that QCA wires
with different cell orientations can cross in the plane with no
disruption on either value being transmitted on either wire,
such a configuration is not seen as realisable in near-to-
midterm QCA experiments. This problem can be explained
in the context of molecular QCA cells that are viewed to be
the most natural and promising QCA implementation
mechanism. One process envisioned for creating systems of
QCA cells is as follows: first, a molecular QCA cell would
be engineered that will pack and assemble properly on a
self-assembled monolayer (SAM) on top of a silicon
surface. Second, I/0 structures would be constructed
lithographically. Third, tracks would be etched into the
self-assembled monolayer (SAM) on top of a silicon surface
with EBL. Finally, the resulting ‘chip’ would then be dipped
into a bath of QCA cells for self-assembly with devices
497

binding to the etched tracks. Currently, the simple tasks of
making QCA cells attach to some substrate, in some
deterministic pattern, with the same cell rotations is non-
trivial. Allowing for selective rotation would only compli-
cate this process. Consequently, systems with few (or no)
wire crossings are viewed as ideal.

2.2 Problem formulation
QCA circuits are built from the following components:
QCA device [1], QCA logic gates [4], QCA wires [3],
and QCA clocks [9] [Note 1]. The following set of
constraints exists during QCA circuit layout: (1) the
terminal constraint: the I/O terminals are located on
the top and bottom boundaries of each logic block, (2)
the signal direction constraint: the signal flow among the
logic QCA cells needs to be unidirectional-from the input to
the output boundary for each time zone [5]. The signal
direction is caused by QCA’s clocking scheme, where an
electric field E created by underlying CMOS wire is
propagating uni-directionally within each block. Thus,
placement and routing need to be done in such a way
to propagate the logic outputs in the same direction as E.
In order to balance the length of wires, we construct a
k-layered bipartite braph as follows:

Definition 1: K-layered bipartite graph (KLBG): a directed
graph G(V,E) is a k-layered bipartite graph if (i) V is
divided into k disjoint partitions, (ii) each partition p is
assigned a level, denoted lev(p), and (iii) for every edge
e ¼ ðx; yÞ, lev ðyÞ ¼ lev ðxÞ þ 1.

Signal skew will determine how fast the circuit can be
clocked. Owing to the unidirectional (from top to bottom)
clocking scheme, we attempt to minimise skew at individual
layers. Thus we introduce a new term, layer signal skew:

Definition 2: Layer signal skew: the difference between the
maximum and minimum latency of all signals going
through layer m, where latency of a particular signal
through m is defined as the time from when the signal leaves
m to when it reaches layer m+1.

The formal definition of QCA placement with duplica-
tion and QCA channel routing are as follows:

Definition 3: QCA placement and duplication: we seek a
KLBG placement and duplication of individual logic gates
so that area, wire crossing, and wirelength are minimised.
A duplication is valid if (i) the duplicated node exists in the
same layer of the KLBG as the original node, and (ii) all
input signals of the original node are also present at the
duplicated node.

Definition 4: QCA channel routing: the goal is to finish
connection among the terminals in every two adjacent
layers of the KLBG so that the total wire crossing and
channel width are minimised.

2.3 Previous work
The crossing number problem [10] is a problem of
determining, for a given integer K, whether a graph G can
be embedded in a 2-D plane with K or fewer pairwise
crossings of the edges (not including the intersections of the
edges at their common endpoints). The crossing minimisa-
tion problem is that of embedding a graph in the plane with
the minimum number of edge crossings. This problem arises

Note 1: Detailed discussions of these building blocks are omitted in this paper
owing to the page limit. Interested readers are referred to the respective reference
498
in the graph drawing application and CMOS VLSI layout.
The crossing number problem was proven to be NP-
complete [10], and several heuristics have been proposed
[11]. The bipartite crossing minimisation problem is a
special case of the crossing minimisation problem, where the
two sets of nodes in a bipartite graph are placed in two
parallel lines. This problem has been proved NP-complete
[12], and several heuristics exist [13].

In CMOS VLSI layout, wire crossing distribution and
minimisation problem has been solved for global routing
[14]. Cell duplication has been especially popular in circuit
partitioning for area and performance optimisation [15].
Some recent effort focuses on performing duplication for
placement enhancement [16] and FPGA timing optimisa-
tion [17]. However, cell duplication has never been applied
to minimise wire crossing.Many channel routing algorithms
exist that attempt to minimise the channel width [18] or
crosstalk [19] recently. However, wire crossing has not been
the focus for channel routing due to the availability of
multiple routing layers.

Our duplication algorithm utilises the existing Barycenter
algorithm [12] as a post-process. But the Barycenter algo-
rithm itself cannot handle duplication. Our routing algo-
rithm extends the existing YK algorithm [18] to optimise the
new wire crossing objective in addition to the traditional
track width objective.

3 Wire-crossing minimisation

3.1 Overview
The only method for reducing wire crossing on a single
plane, without increase in area, is rearranging the nodes.
The problem of determining the position of each node for
the absolute minimum wire crossings is NP-complete; the
same problem for a single layer was already shown to be
NP-complete [12]. Thus we employ Barycenter [12], an
effective heuristic algorithm with simulated annealing for
this purpose. To further reduce wire crossing, we then apply
our fan-out tolerance duplication (FTD) algorithm. To
minimise the increase in area, critical nodes and regions are
prioritised for duplication.

3.2 Barycenter algorithm
In a KLBG, Barycenter traverses all the layers from output
to input. For each node in the current working layer, a
‘weight’ is assigned based on the average column of its fan-
outs. The nodes are then rearranged according to their
weights, from the lowest (left-most column) to the highest
(right-most column). By doing so, the algorithm attempts to
place nodes directly above their fan-out nodes, reducing the
average distance to its outputs and thus eliminating
unnecessary wire crossings.

It is in our interest to reduce as many wire crossings with
Barycenter for there is no cost in area. Thus we attempt to
improve on the heuristics of the algorithm by employing
simulated annealing. Since the weight of a node is
determined by its fan-outs, there are no weights assigned
for the nodes in the output layer as they do not have
outgoing edges. Therefore, Barycenter assumes that the
nodes in the output layer are already in their optimal
positions. Experiments confirmed if these nodes were
rearranged, Barycenter produced a different number of
wire crossings. Simulated annealing was performed on the
arrangement of the output nodes, where the cost function
was the number of wire crossings after applying Barycenter.

The option of reverse-Barycenter has also been consid-
ered, where we traversed the graph from the input to the
output layer and used average fan-ins for the weight. In this
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006

case, the input layer would be assumed to have been placed
optimally. Our experiments indicated that reverse-Barycenter
performed much worse than Barycenter, in terms of wire
crossings.

3.3 Fan-out tolerance duplication algorithm
The motivation of the fan-out tolerance duplication (FTD)
algorithm is from the general observation that the longer a
wire that connects two nodes, the higher chance it has of
causing wire crossings. Thus FTD focuses on identifying
long wires and reducing their lengths. The bipartite nature
of a KLBG allows us to estimate wire length with
the number of columns an edge spans over. If a particular
node had only one output to the adjacent layer, the wire
crossings that it may cause can be eliminated by placing the
node in the same column as its destination node. This is
demonstrated in Fig. 1a, where the wire length has been
reduced to zero as it does not reach over to another column.
However in (b), if a node had multiple fan-outs, and the
destination nodes were apart, no matter where this node is
placed the total length of its fan-outs and the wire crossings
they cause will remain constant.

We present the FTD algorithm in what follows. The
KLBG is traversed from output to input. Nodes that have
split fan-outs, where destination nodes are apart farther
than the threshold, are duplicated. This parameter is
calculated with the tolerance specified as a percentage of
the total number of columns. After all duplications have
been made at a particular layer, it must then be put through
Barycenter again as the weights of the nodes have changed.
An example of FTD with threshold of 2 is shown in Fig. 2.

Fan-out tolerance duplication algorithm

1: threshold ¼ tot:column * tolerance

2: for (i¼ tot.layer� 1 downto 0)

3: for (each node j in layer i)

4: for (each fan-out k of j)

5: for (each fan-out l of j except k)

6: if (7col(k)� col(l) 74 threshold)

7: duplicate_node(j, i, l);

8: barycenter(i);

a

b

c

Fig. 1 Three different scenarios of the Barycenter algorithm
a, c The algorithm successfully reduces wire crossings
b When it fails
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006
duplicate_node(j, i, l)

1: j 0 ¼ copy of node j in layer i excluding fan-outs;

2: place j 0 in layer i;

3: remove fan-out l of node j;

4: add fan-out l to node j 0;

By controlling the tolerance of the FTD algorithm, it is
possible to generate an entire range of wire crossing against
area tradeoff points. If the tolerance is 0%, the resulting
circuit will be wire crossing free as all fan-outs in all nodes
would have been removed via node duplication. Alterna-
tively, for a tolerance of 100%, no duplication will take
place and we are left with the same post-Barycenter circuit.
Any intermediate tolerance will produce a corresponding
area and wire crossing between the two extremes.

The primary weakness of FTD is that as a node is
duplicated, all of its inputs must be duplicated as well. Thus,
if the node had a lot of fan-ins, the duplicated fan-ins may
create more wire crossings than what was removed. The
algorithm would handle these new crossings when it
processes the next layer, but the duplication rate would
increase sharply. Hence, for circuits that have a high fan-in
count, wire crossing reduction can only be expected after a
significant number of duplications or increase in area.

3.4 Priority fan-out tolerance duplication
In the process of trading off wire crossing reduction for area
or additional QCA cells, we would like to prioritise
duplication for nodes that cause the highest number of
crossings. However, to generate a list of the most
problematic nodes is troublesome as the removal of a
single node will affect the wire crossings caused by other
edges. But at the layer level, the problem scales down to
identifying layers that contain most wire crossings. Thus, we
can prioritise layers instead of individual nodes for our
duplication strategy.

Since FTD is applied to a post-Barycenter circuit,
understanding the characteristics of Barycenter can help
us determine the most effective layers to prioritise FTD. We
note that Barycenter uses the average fan-out column as its
weight; hence it handles fan-ins well but fails on fan-outs.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10

Fig. 2 Example of the FTD algorithm with the threshold value of 2
All nodes whose fan-outs spread out more than the threshold are
duplicated. After duplication, the layer is rearranged with Barycenter
499

This is depicted in Fig. 1c and b. Observing the fan-in and
fan-out behaviour of many benchmark circuits, it can be
said that most of the circuits generally take upon a
‘diamond’ shape shown in Fig. 3. Region a is the fan-out
region where input signals spread out to the entire width of
the logic block. Layers in this region generally have more
fan-outs than fan-ins. In region b, processed signals
converge to produce the output signals, resulting in fewer
fan-outs. The height ratio between a and b varied among
circuits but in most cases, a was significantly shorter than b,
which then explained why reverse-Barycenter performed
poorly. Reverse-Barycenter has the opposite characteristics
of Barycenter and its weakness was being applied to the
larger region of the circuit.

3.5 Post optimisation of area and signal
skew
The first post-process after node duplication is to reduce the
number of nodes or area as much as possible. Owing to the
characteristic of the FTD algorithm where all fan-outs of a
single node are identified and possibly duplicated back to
back, there are frequent cases of identical nodes existing
adjacent to each other. In such cases, consecutive identical
nodes may be merged into a single node to reduce area. An
example of neighbour-merging is shown in Fig. 4. Neigh-
bour-merging does not generate additional wire crossings
and may even reduce them in certain cases. Thus the
process is always performed as it is always beneficial.

Our second post-process is layer folding. Figure 5
illustrates the effect of our layer-folding. For each and
every logic gate that has been folded onto a new layer, the
previous layer must provide bypass wires. Naturally, there
must be bypass wires in the new layer for all logic gates
remaining in the original layer. Despite the insertion of

a

b

Fig. 3 General fan-in, fan-out behaviour of circuits
Region a is the fan-out region where input signals get spread
throughout the circuit. Region b is the fan-in region where processed
signals converge towards the output

Fig. 4 Example of neighbour-merging, which removes redundant
nodes
Area and wire crossing may be reduced from this process
500
bypass wires, owing to the fact that every component
remains within the same column (but in different layers),
layer-folding guarantees no additional wire-crossing. Also
note that every other node should be folded down to
minimise the length of the bypass wires.

The width of a QCA wire is significantly less than the
width of a logic gate. Thus it is possible to decrease the layer
width as a logic gate is exchanged for a bypass wire. With a
thinner circuit, the maximum latency would be shortened as
the possible horizontal shift range is reduced. Therefore, the
difference between the maximum and minimum latency will
decrease. Alternatively, layer-folding increases the number
of layers, lengthening the time required for the circuit to
produce the output. Insertion of bypass wires also increases
the overall area of the circuit.

The number of logic gates to move down to a new layer
is determined by the target width. The width after layer-
folding for a layer with n logic gates can be calculated as
W ¼ Lðn� sÞ þ s, where L represents the average width
ratio between a QCA logic gate to a wire and s is the
number of gates folded down. There also exists an absolute
minimum width achievable, where the folded layer would
only contain a single logic gate (and bypass wires). Hence
the target width must be a value between the current width
and the absolute minimum. Owing to the fact that layer-
folding is costly, as an entirely new layer is inserted to the
KLBG per folding, the post-process should only be applied
to layers that do not meet the layer signal skew constraint.

4 QCA channel routing

4.1 Overview
After the QCA gates have been placed into a KLBG, each
channel in the KLBG must be routed. First, the channel
terminals are traversed from left to right, and each contact
edge is added to the VCG (vertical constraint graph) [18]
(line 2). Since the VCGmust be acyclic, cycles in the contact
edges are removed by empty column insertion and vertical
doglegs (line 3). Once the VCG is acyclic, crossing edges are
added to reduce wire crossing (line 4). If cycles exist in
the VCG, contact edges are intelligently removed until the
VCG is once again acyclic (line 5). Lastly, we use left-edge
first (LEF) algorithm [20] to assign tracks to the nets and
finish routing the channel (line 6). This entire process is

Fig. 5 Physical implementation of layer-folding
Logic gate blocks are larger than bypass wires, thus the width of a
single layer can be reduced by folding blocks onto a new layer. The
width and layer signal skew has been reduced at the cost of more wires
and increased area
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006

applied to each channel of the KLBG from top to bottom
to route the entire circuit (line 1).

4.2 Crossing edge insertion
In general, the vertical constraint graph (VCG) [18] is used
in graph-based channel routers to capture the relations
among the terminals. In case there exist cycles in VCG, we
insert doglegs to break them [21] so that the given netlist is
routable. In this paper, we introduce two kinds of edges to
be used in our VCG: (i) contact edge: a directed edge in the
VCG resulting from the contact (or terminal) positions in
the channel. For each pair of top and bottom contacts in
the same column of the channel, an edge is created to order
the top contact’s net above the bottom contact’s net to
prevent their vertical tracks from overlapping. (ii) crossing
edge: a directed edge in the VCG added to orient the nets
for optimumwire crossing minimisation. For a given pair of
nets ðn1; n2Þ, a crossing edge e ¼ ðn1; n2Þ is added if routing
n1 above n2 results in a more wire crossing reduction than
routing n1 below n2. Each crossing edge is assigned a weight
equal to the number of wire crossings it reduces.

We note that wire crossing can only occur between nets
which overlap horizontally, i.e. if an edge exists between
them in a horizontal constraint graph (HCG) [18]. Also, the
crossing count between any arbitrary pair of horizontally
overlapping nets is determined by their vertical ordering.
For example, consider Net 1 and Net 2, which overlap
horizontally in Fig. 6. If Net 1 is placed below Net 2, as in
Fig. 6a, then they will cross twice: a crossing for each top
terminal of Net 1 and for each bottom terminal of Net 2
located in this region of overlap. Likewise, if Net 2 is placed
below Net 1, as in Fig. 6b, they will cross once: a crossing
for each bottom terminal of Net 1 and for each top terminal
of Net 2 located in this region of overlap. A similar
relationship exists between Nets 1 and 3, but for the
opposite order. For any pair of nets, one vertical orientation
will result in as many or fewer crossings as the other vertical
orientation. The orientation with the least crossings is the
optimum vertical orientation of these nets to reduce
crossing. If the orientation of every net with every other
net is enforced in this manner, then the resulting crossing
count will be reduced as much as possible.

To reduce crossing, we use VCG to orient the nets with
vertical relationships that reduce the crossing counts

0 2 3 3 1

1 2 2 3 0

2

3

1

0 2 3 3 1

1 2 2 3 0

2

3

1

0 2 3 3 1

1 2 2 3 0

2

3

1

1

2 3

1 1

a b

c d

Fig. 6 Overlap of Net 1 and Net 2
a Wire crossing between n1 and n2 is 2
b Wire crossing between n1 and n2 is 1
c Two crossing edges (dashed lines) are inserted to the VCG, where the
edge weights denote the wire crossing reduction
d Minimum wire crossing solution based on c
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006
between pairs of nets. We add previously defined crossing
edges between nets to enforce the vertical relationship that
results in the minimum number of crossing between them.
For each pair of Net 1 and Net 2 that overlaps horizontally,
we compare the amount of wire crossing reduced by routing
Net 1 above Net 2, and vice versa. We then add a crossing
edge to enforce the vertical net orientation that results in
more wire crossing reduction. Each crossing edge is assigned
a weight equal to the number of wire crossings saved by
orienting the nets according to that vertical orientation. An
original VCG is shown in Fig. 6c, and a modified version is
shown in Fig. 6d. The resulting channel, shown in Fig. 6e,
results in the fewest wire crossings. The theoretical lower
bound of wire crossing for each circuit is equal to the sum
of the minimum values of wire crossing for each pair of
nets. In the same way, the upper bound of crossing is equal
to the sum of the maximum values for each pair. These
lower and upper bounds were calculated and appear in
Table 1.

4.3 Optimal cycle breaking
If the VCG is not acyclic after the addition of crossing
edges, then the cycles must be removed before track
assignment can take place. An illustration is shown in
Fig. 7a. Since the contact edges cannot be removed without
invalidating the solution, we remove crossing edges until the
VCG is once again acyclic. The weight of crossing edges
represents wire crossing reduction, so our goal is to
minimise the total weight of the crossing edges removed
to make VCG acyclic. This problem is formally defined as
follows:

Definition 5: Weighted minimum feedback edge set problem:
Given an edge-weighted directed graph G(V,E) with cycles,
the goal is to find a set of edges A � E with the minimum
total weight such that G0ðV ;E � AÞ is acyclic.

Table 1: KLBG construction

Di-graph KLBG

ckt xnode xedge xlayer xcol xbypass

adder 99 130 19 62 600

k2 317 2893 4 215 35

c1908 938 1523 42 221 4946

pair 1140 2157 20 666 5720

i8 1397 4707 10 1712 6585

c3540 1741 2961 49 512 4753

t481 2089 6824 12 2834 5080

i10 2978 5600 56 1152 24 955

s5378 3239 4427 35 623 8520

c7552 3827 6252 45 806 11 216

s9234 6094 8221 60 1089 24 288

b15 opt 8097 16 375 47 2711 81 897

s13207 9517 12 031 61 1824 48 971

s15850 11 081 1434 84 1631 75 483

b21 opt 13 190 27 198 76 3931 113 763

b17 opt 25 816 53 133 46 9102 256 803

big3 37 381 63 535 288 12 497 235 3419

big1 40 564 60 172 41 12 989 343 306

big4 44 649 66 205 273 14 752 214 4751

big2 62 225 109 161 470 16 663 594 8331
501

Since the non-weighted version of the minimum feedback
edge set problem is NP-complete [22], it is not hard to see
that this weighted version also becomes NP-complete.

We note that a simple heuristic exists to solve the
weighted minimum feedback edge set problem: perform
DFS once and remove all backward (and crossing) edges
found. This will guarantee that the remaining VCG is
acyclic. A major shortcoming of this approach named
backEdge is that it ignores the edge weights and may
produce a feedback edge set with a high total weight. An
illustration is shown in Fig. 7b, where backEdge removes
ðn5; n1Þ and loses wire crossing reduction of six to break
the two cycles. However, a better approach is to remove
ðn2; n3Þ and ðn4; n5Þ to break the cycles and only lose wire
crossing reduction of three. Note that this second approach
named cycleBreaker requires us to enumerate all cycles in
VCG. DFS, however, can not provide all cycles in a single
pass as illustrated in Fig. 7b. DFS can either detect
(1, 2, 3, 5, 1) or (1, 2, 3, 5, 1) but not both in a single pass.
Therefore, it takes several iterations to remove all cycles
with this cycle-by-cycle approach that searches for the
minimum-weighted crossing edge.

We present our cycle breaker algorithm in what follows:

Cycle breaker algorithm

1: while (the VCG contains cycles)

2: perform depth-first traversal(VCG);

3: C¼ set of detected cycles in VCG;

4: while (7C740)

5: for (each crossing edge e2C)

6: setKey(e,C);

7: e¼ edge with the highest key in C;

8: remove e from VCG;

9: remove all cycles containing e from C;

setKey(e, C);

1: key(e)¼ count¼ 0;

2: for (each cycle c2C that contains e)

3: count¼ count+1;

3: for (each edge e0 2 ca e)

4: key(e) ¼ key(e) + w(e0);

5: key(e)¼ count � key(e)/w(e);

As the cycleBreaker function traverses the VCG in depth-
first order, it collects the cycles detected. When this traversal
is complete, it will have added some cycles from each

1

2 3

1

2 3

4

5

6

2

1

4

a b

Fig. 7 Removal of cycles
a Crossing edges may create cycles
b BackEdge will break the two cycles in a single pass (by removing
(n5, n1)), whereas cycleBreaker takes two passes: first to remove (n2, n3)
and next to remove (n4, n5)
502
strongly connected subgraph in the VCG to the collection
of cycles that must be broken. Because the VCGwas acyclic
until the crossing edges were added, each cycle must depend
on the presence of a crossing edge. Once these cycles are
found, the crossing edges of each are keyed according to
the setKey function. We use the following function to
determine the edge key value

keyðeÞ ¼
jcðeÞj �

P

e02cðeÞ
weightðe0Þ

weightðeÞ
where c(e) denotes the cycles that contain e. The edge with
the highest key is removed from the VCG, and the cycles
that contain this edge are removed from the collection of
detected cycles. The edges are rekeyed and further cycles are
removed until no more detected cycles remain unbroken. In
this manner, small-weighted edges that occur in many cycles
with other higher-weighted edges are more likely to be
targeted for removal to break cycles. Note that these key
values will change upon each edge/cycle removal. Thus, we
use a priority heap to accommodate the dynamic key
update. As discussed previously, cycleBreaker runs multiple
iterations of ‘DFS plus cycle removal’ until all cycles are
removed from the VCG.

4.4 Wire crossing against channel width
trade-off
After our VCG becomes acyclic again, the last step is to
assign each net to a unique routing track, i.e. to route each
net. We note that the net-merging algorithm used in YK
router [18] may not be a good option for wire crossing
minimisation. YK attempts to merge nets without increas-
ing the longest path from source to sink in the VCG since it
is the theoretical track count lower bound for the channel.
In addition, nets can only be merged if they are not on the
same path in the VCG. Since we insert crossing edges to the
VCG, the longest path length could increase, and thus
merging opportunities could be reduced. Therefore, the task
of the YK algorithm is much harder with the presence of
these crossing edges than without. These more complicated
vertical relationships between overlapping nets often require
a larger number of tracks to contain them than a solution
that does not attempt to minimise the resulting crossing
count. Thus, the routing track assignment is done by the
LEF [20] algorithm.

Consider Fig. 8, where the contact edges do not dictate a
relationship between Nets 2 and 3. These nets can be routed
using only two tracks, but more crossings can be removed
by adding a crossing edge from Net 1 to Net 2. Again, this
routes Net 1 between Nets 2 and 3, reducing the crossings,
but, this time, increasing longest path and the track count.
Since each net is on the same path, no nets can be merged.
When the longest path in the VCG increases, the lower
bound of the track count increases, often resulting in wider
channels. Thus, channel routing solutions that reduce
crossings tend to increase the track count of the circuit.

5 Experimental results

Our algorithms were implemented in C++/STL, compiled
with gcc v2.96 run on Pentium III 746MHz machine.

5.1 QCA duplication results
Twenty combinational and sequential circuits of various
sizes were selected for our experiments. The bigx are
industry circuits, bxx.opt from the ITC benchmark [23], and
the remaining from the ISCAS benchmark [24]. The circuits
were initially converted to directed graphs, involving the
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006

removal of registers for the sequential circuits. Table 1
shows the result of KLBG construction. The number of
layers (xlayer) indicate the length of the critical path. The
number of bypass nodes inserted (xbypass) in general may
seem high at first, as they are 5–10 times larger than that of
the original nodes. However, we need to remind ourselves
that bypass nodes are just QCA wires and aid describing the
connections between real nodes in a KLBG representation
of the circuit. The benchmark circuits were divided into two
sets according to their sizes, 8000 logic gates or nodes being
the boundary. This was primarily due to simulated
annealing; performing the process for larger circuits would
require impractical computation times. Neighbour-merging
was applied to all circuits as a post-process before the
evaluation of comparison metrics.

Table 2 shows that simulated annealing improves upon
the heuristics of Barycenter as expected. Observing the
percentage of crossings removed (%x.r), up to 46.5% of
wire crossings (compared to the result of Barycenter) were
able to be removed without duplication costs. Table 3
shows the results of our FTD algorithms. For both FTDs,
the tolerance was controlled so that the ratio of area (area),
estimated with the number of nodes present, was as closely
matched to 2.00. For priority FTD, even 0% tolerance

1 2 0 3 3

0 2 2 3 1

2 3

1

1

2 3

1 2 0 3 3

0 2 2 3 1

2

3

1

1

2 3

1

a b

c d

Fig. 8 Overlap of Nets 2 and 3
a, b A similar channel and VCG to Fig. 7
c Optimum solution for minimising wire crossing
d Corresponding modified VCG with an increased longest path
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006
(maximum area) could not double the area in many cases,
indicating once again that the fan-out region is the minority
region of the circuit. In general, 0% priority FTD removed
around 60–70% of the total wire crossings with less than
50% increase in area. To measure the effectiveness of
duplicating prioritised nodes, we compare its results to that
of regular FTD with wire crossings reduced per duplication
(x.r/d) to compare the two FTDs. Except for adder, the
smallest circuit, priority FTD proves to have performed
more effective or equal duplications. In addition, the
difference in x.r/d seems to become more significant as the
circuits get larger.

Table 4 shows the placement results for the larger circuits
where Barycenter was followed by priority FTD with 0%
tolerance. Data indicate that our placement algorithm
allows the removal of about half the wire crossings in the
circuit with a very small increase in area. In circuits such as
big2 and big3, the area of the circuit rather decreased after
duplication as neighbour-merging removed redundant
nodes. As these circuits have more layers and columns,
there is a distinctive prioritised region with possibly largely
split fan-outs. Priority FTD taking advantage of this is
clearly shown with the x.r/d measurement as it increases
proportionally with the size of the circuit.

Table 2: QCA placement results for smaller circuits

Barycenter Barycenter w/SA

ckt x.ing area %x.r x.ing area %x.r

Adder 409 1.00 0.0 219 1.00 46.5

k2 810K 1.00 0.0 703K 1.00 13.2

c1908 17.7K 1.00 0.0 13.8K 1.00 22.5

Pair 80.4K 1.00 0.0 80.2K 1.00 0.3

i8 588K 1.00 0.0 584K 1.00 0.6

c3540 73.2K 1.00 0.0 58.9K 1.00 19.5

t481 3.69M 1.00 0.0 3.68M 1.00 0.3

i10 300K 1.00 0.0 280K 1.00 6.6

s5378 114K 1.00 0.0 85.9K 1.00 24.4

c7552 163K 1.00 0.0 105K 1.00 35.5

s9234 368K 1.00 0.0 260K 1.00 29.1

Time 9s 819s
Table 3: QCA placement results for smaller circuits

Priority FTD Regular FTD

ckt x.ing area %x.r xdup x.r/d tol x.ing area %x.r xdup x.r/d tol

Adder 54 1.05 86.8 33 10.8 0 107 1.03 73.8 21 14.4 13

k2 491K 1.99 39.3 347 918.9 73 491K 1.99 39.3 347 918.9 73

c1908 7835 1.20 55.8 1655 6.0 0 13.1K 1.16 26.0 1262 3.7 39

pair 14.7K 1.08 81.7 718 91.6 0 27.7K 1.07 65.6 632 83.5 24

i8 279K 2.01 52.5 8156 37.9 23 326K 2.01 44.5 8203 31.9 29

c3540 27.6K 1.16 62.3 1176 38.8 0 36.8K 1.16 49.7 1179 30.9 30

t481 0 1.88 100.0 6301 586.5 0 0 1.88 100.0 6301 586.5 0

i10 104K 1.43 65.2 12.5K 15.6 0 261K 1.52 13.0 15.0K 2.6 32

s5378 37.3K 1.30 67.2 3740 20.4 0 53.3K 1.30 53.0 3748 16.1 28

c7552 72.7K 1.08 55.5 1532 59.3 0 102K 2.78 37.3 27.7K 2.2 19

s9234 108K 1.25 70.5 9014 28.7 0 202K 2.38 45.1 49.4K 3.4 30

Time 18s 20s
503

Table 5: QCA channel routing results

LEF YK BE CB

ckt xing track xing track xing track xing track

cmb 0 42 0 42 0 42 0 42

decod 26 65 26 65 26 65 0 77

Pm1 56 28 52 28 50 29 1 43

i1 126 113 112 110 97 119 17 136

sct 2447 82 2180 79 2025 99 73 140

adder 0 72 0 72 0 72 0 72

i2 34 30 131 3388 142 3319 158 2270 281

x4 58 672 372 54 528 402 50 656 523 2242 1253

k2 533 694 858 493 600 874 375 464 1274 92 059 1692

i5 28 443 596 27 260 624 25 602 669 190 1317

apex6 64 361 739 62 877 807 58 498 902 605 2755

rot 150 372 1011 143 856 1108 144 636 1163 3289 4133

Frg2 666 234 1358 630 384 1614 620 448 1878 7219 7128

pair 554 124 2348 530 954 2643 527 186 2850 6599 12516

runtime 6857 7279 8080 7367

Table 4: QCA placement results for larger circuits (FTD tolerance was set to 0% for all circuits)

Barycenter Priority FTD

ckt x.ing area %x.r x.ing area %x.r xdup x.r/d

b15 opt 2.06M 1.00 0.0 706K 1.58 65.8 54.4K 24.9

s13207 469K 1.00 0.0 211K 1.05 55.0 3919 65.8

s15850 394K 1.00 0.0 161K 1.02 59.1 4054 57.5

b21 opt 3.06M 1.00 0.0 2.60M 1.01 14.9 2921 156.2

B17 opt 8.62M 1.00 0.0 2.51M 1.28 70.9 86.1K 71.0

big3 36.4M 1.00 0.0 32.2M 0.98 11.6 3752 1123.4

big1 21.0M 1.00 0.0 9.74M 1.01 53.6 8225 1368.0

big4 22.0M 1.00 0.0 12.1M 1.00 44.8 7601 1296.4

big2 82.9M 1.00 0.0 59.0M 0.96 28.9 11.2K 2139.9

Time 2296s 2853s
5.2 QCA channel routing results
Table 5 shows the comparison of our cycleBreaker (CB)
algorithm to the LEF algorithm (LEF), and Yoshimura
and Kuh (YK) [18]. It was also compared to the backEdge
algorithm (BE) discussed in Section 3 (a topological
feedback edge set implementation). We note that LEF,
YK, and BE generated channel routing solutions well above
the circuits theoretical minimum crossing (x-low), but very
close to the theoretical minimum track count (t-low). Our
channel routing method CB comes much closer to the
theoretical minimum crossing count, but produces wider
channels. Note that our channel routing method completes
in only 7.5% more runtime than the simplest alternative
method: LEF. Not only does our algorithm very closely
approach the theoretical lower bound of wire crossing for
each circuit, but it does so in a time-efficient manner.

Table 6 first shows the ratio of the resulting wire crossing
count from each method to the theoretical lower bound of
wire crossing for each circuit. The average LEF result has
wire crossing 19x above the lower bound. The average result
by the YK method is 18x above the lower bound, and the
average BE result is almost 17x above the lower bound. In
comparison, the method presented here results in average
wire crossing only 13% above the lower bound, providing
504
superior wire crossing minimisation. Table 6 also shows
how the wire crossing count and track count are inversely
proportional. While our channel routing method produces
wire crossing much closer to the theoretical lower bound,
the resulting channel width is almost 6x greater than the
theoretical lower bound. The LEF, YK, and BE methods
produce channels about 40–80% greater than the lower bound.

6 Conclusions

In this article, we have presented new algorithms for wire
crossing reduction during placement and channel routing.
The FTD algorithm reduces wire crossing by node
duplication. With its tolerance parameter, the user is able

Table 6: Comparison of wire crossing and track usage
values to their theoretical lower bounds

ckt LEF YK BE CB

xing 20.37 19.26 17.86 1.13

track 1.43 1.58 1.80 5.78
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006

to select a trade-off point between the minimum number of
crossings with no area cost and the minimum area needed
to guarantee zero wire crossing. Our folding post process
reshapes the circuit to a square-like shape, reducing wire
skew and possibly the overall chip area. Our channel
routing algorithm reduces the crossing count to very near
the theoretical lower bound, as it targets the absolute
minimum number of wire crossings to route a particular
circuit. We also identified a tradeoff between wire crossing
and channel width in QCA channel routing problem.

7 Acknowledgment

This research is partially supported by the National Science
Foundation under NER-0404011.

8 References

1 Amlani, I., Orlov, A., Snider, G., and Lent, C.: ‘Demonstation of a
func. quantum-dot cellular automata cell’, J. Vac. Sci. Technol., 1998,
pp. 3795–3799

2 Lieberman, M., Chellamma, S., Varughese, B., Wang, Y., Lent, C.,
Bernstein, G., Snider, G., and Peiris, F.: ‘Quantum-dot cellular
automata at a molecular scale’, Ann. New York Acad. Sci., 2002,
pp. 225–239

3 Snider, G., Orlov, A., Amlani, I., Bernstein, G., Lent, C., Merz, J.,
and Porod, W.: ‘Quantum-dot cellular automata: Line and majority
gate logic’, Jpn. J. Appl. Phys., 1999, pp. 7227–7229

4 Amlani, I., Orlov, A., Toth, G., Bernstein, G., Lent, C., and Snider,
G.: ‘Digital logic gate using quantum-dot cellular automata’, Science,
1999, 284, pp. 289–291

5 Kummamuru, R., Timler, J., Toth, G., Lent, C., Ramasubramaniam,
R., Orlov, A., and Bernstein, G.: ‘Power gain in a quantum-dot
cellular automata latch’, Appl. Phys. Lett., 2002, 81, pp. 1332–1334

6 Walus, K., Dysart, T., Jullien, G., and Budiman, R.: ‘QCADesigner: a
rapid design and simulation tool for quantum-dot cellular automata’,
IEEE Trans. Nanotechnol., 2004, 3, pp. 26–31

7 Antonelli, D., Chen, D., Dysart, T., Hu, X., Kahng, A., Kogge, P.,
Murphy, R., and Niemier, M.: ‘Quantum-dot cellular automata
IEE Proc.-Circuits Devices Syst., Vol. 153, No. 5, October 2006
partitioning: Problem modeling and solutions’. Proc. ACM Design
Automation Conf., 2004

8 Lim, S.K., Ravichandran, R., and Niemier, M.: ‘Partitioning and
placement for buildable QCA circuits’, ACM J. Emerging Technol.
Comput. Syst., 2005, 1, pp. 50–70

9 Tougaw, P., and Lent, C.: ‘Logical devices implemented using
quantum cellular automata’, J. Appl. Phys., 1994, 75, pp. 1818–1825

10 Garey, M., and Johnson, D.: ‘Crossing number is NP-complete’,
SIAM J. Algebr. Discrete Methods, 1983

11 Weiskircher, R., Gutwenger, C., and Mutzel, P.: ‘Inserting an edge
into a planar graph’. ACM-SIAM Symp. on Discrete algorithms, 2001

12 Sugiyama, K., Tagawa, S., and Toda, M.: ‘Methods for visual
understanding of hierarchical system structures’, IEEE Trans. Syst.
Man. Cybern., 1981, SMC-11, pp. 109–125

13 Catarci, T.: ‘The assignment heuristic for crossing reduction’, IEEE
Trans. Syst. Man Cybern., 1995, 25, pp. 515–521

14 Marek-Sadowska,M., and Sarrafzadeh,M.: ‘The crossing distribution
problem’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
1995, 14, pp. 423–433

15 Enos, M., Hauck, S., and Sarrafzadeh, M.: ‘Evaluation
and optimisation of replication algorithms for logic bipartitioning’,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 1999,
pp. 1237–1248

16 Rkic, M., Lillis, J., and Beraudo, G.: ‘An approach to placement-
coupled logic replication’. Proc. ACM Design Automation Conf.,
2004

17 Beraudo, G., and Lillis, J.: ‘Timing optimization of FPGA placements
by logic replication’. In Proc. ACM Design Automation Conf., 2003

18 Yoshimura, T., and Kuh, E.: ‘Efficient algorithms for channel
routing’, IEEE Trans. Comput.-Aided Des. Int. Circuits Syst., 1982,
CAD-1, pp. 25–35

19 Sapatnekar, S.: ‘A timing model incorporating the effect of
crosstalk on delay and its application to optimal channel routing’,
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2000, 19,
pp. 550–559

20 Hashimoto, A., and Stevens, S.: ‘Wire routing by optimizing channel
assignment within large apertures’. Proc. ACM Design Automation
Conf., 1971, pp. 155–169

21 Deutch, D.: ‘A dogleg channel router’. Proc. ACM Design
Automation Conf., 1976

22 Garey, M.R., and Johnson, D.S.: ‘Computers and intractability: a
guide to the theory of NP-completeness’ (Freeman, San Francisco,
1979), pp. 209–210

23 ITC99. The ITC 1999 benchmark suite
24 ISCAS89. The ISCAS 1989 benchmark suite
505

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.2
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

