
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 3017

Profile-Driven Instruction Mapping for
Dataflow Architectures

Mongkol Ekpanyapong, Michael Healy, and Sung Kyu Lim

Abstract—Dataflow architectures provide an abundance of computing
units that can be statically or dynamically configured to match the comput-
ing requirements of the given application. Wire delay has a reduced impact
in dataflow architectures because only neighboring architectural entities
are allowed to communicate within a single clock cycle. In this paper,
the authors propose integer linear programming (ILP)-based placement
and routing algorithms for mapping dataflow graphs (DFGs) to dataflow
machines. The optimization process is guided by profiling information
available from the compiler. The goal is to minimize the total execution
time of the given application represented by a DFG under architectural
constraints. A hierarchical method to handle the complexity of the initial
ILP formulation is proposed. The profile-driven ILP algorithm reduces
the total execution time of benchmark applications compared to the
conventional wirelength-driven ILP approach. In addition, the ILP-based
approach outperforms simulated annealing-based approach.

Index Terms—Dataflow architecture, instruction mapping, placement,
routing.

I. INTRODUCTION

As wire delay increasingly becomes a significant performance bot-
tleneck in monolithic architectures, with their centralized structure
requiring fast communication over long distances, there is a strong
motivation to move to dataflow architectures. Dataflow computing is
a computing paradigm with an abundance of computing units that
can be statically or dynamically configured to match the computing
requirements of the given application. Dataflow architectures distribute
their arithmetic logic units (ALUs), storage units, and communication
paths over a two-dimensional grid and enable enormous parallelism in
computation and communication by eliminating complex centralized
control. They fire operations into ALUs as soon as the required
input operands became available. The results are then routed to other
ALUs waiting on them. Wire delay has a reduced impact since only
neighboring architectural entities are allowed to communicate within
a single clock cycle. This allows dataflow architectures to be extremely
scalable compared to the traditional von Neumann architecture.

An integral part of the dataflow computing is application mapping.
The dataflow graph (DFG) is used to model the flow of data among
the instructions, where each node in DFG is mapped to a unique
computing resource in the target dataflow machine. The total number
of clock cycles needed to finish executing the given DFG on a target
dataflow machine is heavily dependent upon the quality of DFG
mapping solution. This is because the communication delay is deter-
mined by the distance between the instructions as well as the routing
switch delays along the paths. Thus, an intelligent mapper would place
frequently and time critically communicating parts of the computation
close to each other, thereby delivering very high performance. Thus,
the effective mapping of applications to the dataflow architecture
grid requires a synergistic interaction between compilers and physical

Manuscript received September 3, 2005; revised February 4, 2006 and
April 27, 2006. This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) Polymorphous Computer Architecture
Program under Contract F33615-03-C-4105 and in part by the National Science
Foundation under Contract CNS-0411149. This paper was recommended by
Associate Editor K. Bazargan.

The authors are with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250 USA.

Digital Object Identifier 10.1109/TCAD.2006.883927

design. A more rigorous approach is to combine compilation and
placement. This combined approach allows compilers to expose more
information to the placement such as the access profile among different
instructions. On the other hand, compilers gain geometric information
for the instructions on the dataflow architecture and perform more
optimization.

The contribution of this paper is the introduction of the new dataflow
mapping problem along with the first placement and routing algo-
rithms. The optimization process is guided by profiling information
available from the compiler. Our goal is to minimize the total execution
time of the given application represented by a DFG under architectural
constraints. Our solution is based on integer linear programming (ILP)
formulation. ILP-based approach generally produces better quality
results at the cost of more runtime compared to other methods such
as greedy heuristics or simulated annealing (SA) [1]. In this paper,
we propose a hierarchical method to handle the complexity of the
initial ILP formulation. Our profile-driven ILP algorithm reduces
the total execution time of benchmark applications compared to the
conventional wirelength-driven ILP approach. In addition, our ILP-
based approach outperforms SA-based approach.

Our ILP-based instruction mapping for dataflow architecture is
similar to ILP-based netlist mapping for field-programmable gate
arrays (FPGAs). There exist several works that solve the FPGA
problem using ILP-based approach [2]. ILP approach is also used for
application-specific integrated circuit (ASIC) designs [3]–[6]. These
two problems are similar in that directed graphs are used to repre-
sent the program/circuit to be mapped, and the hardware resource
constraints are expressed via integer linear equations. Each node
in the graph is associated with some computing latency/delay, and
the mapping solution determines the overall communication/signal
propagation delay of application/circuit mapped to the target hardware.
On the other hand, the granularity of the target hardware element is
quite different in these two problems, where our dataflow mapping
deals with instructions, ALUs, and memories, whereas FPGA mapping
deals with logic gates, flip-flops, and lookup tables. Another difference
is the mapping objective, where FPGA mapping is mostly concerned
with interconnect length, congestion/routability, and longest path delay
measured from the “hardware” mapped onto FPGA. On the other
hand, the total execution time of given “software” that is mapped to
dataflow machine is the major focus during our DFG mapping. Thus,
the exploitation of profiling information via program simulation is only
possible and meaningful in our dataflow mapping problem.

The rest of this paper is organized as follows: Section II discusses
the dataflow computing and related works. Section III presents the
problem formulation. Our DFG mapping algorithm is described in
Section IV. Experimental results are presented in Section V, and we
conclude in Section VI.

II. PRELIMINARIES

A. Dataflow Architectures

Dataflow machines are perhaps the best studied alternative to von
Neumann processors. The dataflow model of execution offers attrac-
tive properties for parallel processing. First, dataflow computing bases
instruction execution on operand availability; thus, synchronization of
parallel activities is implicit. Second, dataflow instructions do not con-
strain sequencing except for data dependencies in the program. Thus,
the DFG representation of a program exposes all forms of parallelism,
eliminating the need to explicitly manage parallel execution. For high-
speed computations, the advantage of the dataflow approach over the
control-flow method stems from the inherent parallelism embedded

0278-0070/$20.00 © 2006 IEEE

3018 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

at the instruction level. This allows efficient exploitation of fine-
grain parallelism in application programs. Due to its simplicity and
elegance in describing parallelism and data dependencies, the dataflow
execution model has been the subject of many research efforts. The
first dataflow architectures [7] appeared in the mid- to late 1970s, and
there was a notable revival in the late 1980s and early 1990s [8]–[10].
Currently, there are ongoing research works that extend the dataflow
computing to handle nonstreaming applications such as TRIPS [11],
WaveScalar [12], and MONARCH [13].1

B. Related Works

Among the several existing works that perform instruction schedul-
ing via temporal partitioning and mapping [15]–[17], the work by
Nagarajan et al. [17] is the closest work to ours. They presented a static
instruction scheduler named static placement, dynamic issue (SPDI)
for their TRIPS [11] architecture. The SPDI scheduling combines
compiler-driven placement of instructions with hardware-determined
issue order. In a TRIPS architecture that uses the SPDI scheduling,
instructions execute in dataflow order with each instruction issuing
when its inputs become available. SPDI-based TRIPS architectures
thus retain the benefits of static placement.

There exist several differences between SPDI and our work. First,
SPDI assumes that the size of DFG could be larger than that of the
target architecture, i.e., more instructions to map than the number of
ALUs available. Thus, SPDI first places the instructions to the ALU
grid and then schedules them on a timeline so that the hardware han-
dles issuing properly. On the other hand, we assume that our grid-based
dataflow architecture can always accommodate a given DFG so that
no external instruction scheduling and issuing are necessary—a pure
dataflow characteristic. Second, SPDI does not perform routing and
thus relies only on the physical location of the ALUs to estimate the
access latency among the placed instructions. In our case, routability is
an important issue during DFG placement and is handled carefully. A
detailed routing information is used not only to configure our dataflow
machine but also to estimate access latency more accurately. Last, our
DFG mapping is profile guided, where the compiler propagates the
simulation results of the target application so that the subsequent DFG
mapping process can explicitly target the critical paths identified by
the compiler. On the other hand, no profiling is used in SPDI.

III. PROBLEM FORMULATION

A. Compilation Flow

First, an application is fed into the system by the front-end com-
piler. The DFG is then generated. High-level machine-independent
compiler optimization is performed here. Then, low-level optimization
is invoked during back-end compilation. We modify the Trimaran
compiler [18] such that the mapper reads the annotated DFG, performs
placement, and annotates the placement and routing solution back to
the assembler. Then, the assembler is used to generate the binary for
a given architecture. Note that the architecture description is read by
compiler, mapper, and assembler such that minor architecture modifi-
cations can be done without system modification. Statistic information
for the given application is extracted from the front-end compiler and
available for other parts of flow.

1Another architecture that is related to our work is RAW [14]. RAW
processor is partitioned into many tiles, where each tile is composed of a small
processor. Unlike dataflow-based architecture, the mapping of RAW is not done
at instruction level.

Fig. 1. Description of generic dataflow fabric, where squares represent arith-
metic clusters and circles represent memory clusters. Our arithmetic cluster
contains eight arithmetic elements and four multiplexing elements. The operand
queues in our arithmetic element enable an effective nonstreaming application
execution.

B. Architecture and Program Model

Fig. 1 shows an illustration of the dataflow architecture used
in this paper.2 Squares in the dataflow fabric represent arithmetic
clusters, and circles represent memory clusters. Fig. 1(c) shows the
extension made to the ALUs, which is similar to the ALUs used in
WaveScalar [12]. In each ALU, the input operands contain a tag field
that must be matched in order for the ALU to execute the instruction.
Therefore, this extension requires additional buffers, comparison hard-
ware, and extension of the operand field to include tag assignments.
Along with additional hardware, additional instructions are inserted
by the compiler to handle this extended feature. A tag generation
mechanism is included for the modifications made to the ALUs. The
purpose of this tag system is to allow many iterations of a loop
to be executed in parallel whenever there are available resources.
Throughout our experiment, we assume that each arithmetic block
consists of eight ALUs and four multiplexers, whereas memory blocks
consist of four memory nodes and four multiplexers.

DFGs are used to identify which instructions produce data needed
by other instructions. If-conversion [19] is performed to convert con-
trol dependencies in an application into dataflow edges. Operations in
DFGs can now be conditionally executed by consuming a predicate
operand produced by the original control-branching condition. An
instruction is only executed if its predicate input is set to true. Loops
in a program are captured as cycles in the DFG. After the compiler
constructs a DFG, each node in the DFG is mapped to some processing
element on the dataflow architecture grid. General processing elements
consist of ALUs and input buffers to store operands. Processing
elements can execute and communicate in parallel subject to dataflow
constraints captured by the DFG. Typically, dataflow architectures

2This architecture is not an imaginary one. Instead, our dataflow mapping
tool presented in this paper is targeting MONARCH architecture [13] developed
by USC/ISI and Raytheon Corporation that supports dataflow computing mode.
In fact, MONARCH is an example of polymorphic computing architecture
(PCA) that can dynamically morph into dataflow, RISC, or SIMD mode
depending on the computing needs.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 3019

have built-in flow-control mechanisms. A processing element produc-
ing a result will stall automatically if the input buffers on a processing
element consuming the result are full. Similarly, a processing element
will not execute until all its inputs are available.

C. DFG Mapping Problem

Our DFG mapping process is divided into placement and routing
steps. We model DFG using G(V,E), where V is the set of dataflow
nodes and E is the set of dataflow edges. There are three types of
dataflow nodes: 1) arithmetic; 2) memory; and 3) multiplexing. Each
node is associated with a nonuniform delay, where more complex
operations such as multiplication and division incur larger delay
than simpler operations such as addition and subtraction. Each edge
e(x, y) ∈ E is associated with “profile” information that denotes how
many times x accessed y during a DFG simulation. Section III-D
discusses how the simulation is performed.

We model the dataflow architecture using a graph A(N,W), where
N is the set of architectural elements andW is the set of architectural
wires connecting the elements. Our dataflow architecture contains
two levels of hierarchy: 1) element level and 2) cluster level. Each
element can accommodate (and thus execute) a single dataflow node,
and each cluster contains multiple elements. The basic assumption is
that our generic architectural element (i.e., ALU) can be configured
to execute any type of arithmetic operations that appeared in a given
DFG. Thus, each architectural element is configured to execute the in-
struction mapped to it. There are three types of architectural elements:
1) arithmetic; 2) memory; and 3) multiplexing. If a DFG node v is
mapped to an architectural element n, the type of v has to match
that of n. There are two types of architectural clusters: arithmetic and
memory clusters. An arithmetic cluster contains a set of arithmetic
and multiplexer elements. A memory cluster contains a set of memory
and multiplexer elements. The multiplexing elements are used to
connect arithmetic and memory elements.

In this paper, we assume that |V | < |N | and |E| < |W |, i.e., the
size of given DFG is always smaller than the given architecture.3 Thus,
DFG partitioning and/or scheduling [16] is not necessary. Formal
problem definitions are given as follows.
Definition 1: DFG placement problem is to map each DFG node

v ∈ V to a unique architecture element n ∈ N such that the type and
capacity constraints are satisfied.
Definition 2: DFG routing problem is to map each DFG edge

e ∈ E to a path in A such that the wire capacity constraint is satisfied.
A path consists of all related architectural elements and intercluster/
intracluster wires.

Our minimization objective includes wirelength and profiling
weight. Wirelength is calculated at two stages of the DFG mapping:
during placement and routing. An illustration is shown in Fig. 2.
The wirelength of a DFG edge during placement is the Manhattan
distance between the source and sink based on a cluster-level grid.
We ignore the wirelength difference for intracluster connections. The
wirelength of a DFG edge during routing is the number of clusters
along the edge. The profiling weight is equal to the normalized
access frequency gathered by the front-end compiler. The minimiza-
tion of profile-weighted wirelength improves the total execution time
of the application as evidenced by our related experiments shown
in Section V. The estimation of the total execution time is explained in
the following section.

3It is important to note that a given DFG may still not be mappable (i.e.,
unroutable) depending on the quality of placement and routing solution as
evidenced by our related experiments shown in Section V. Thus, one of our
objectives is to improve the routability during clustering and placement.

Fig. 2. Wirelength computation during placement (= e1) and routing
(= e2).

D. Profiling and Execution Time Estimation

During profiling, high-level simulations are performed on C source
codes. By running the application on sample input sets, statistic infor-
mation, such as how many times each path is executed, is collected.
This statistic information is then annotated back into each edge in
the DFG. In SPEC2000, there are three different input sets available:
test, train, and reference. The test input set is just for quickly testing
whether the compiler/architecture is working correctly or not. The
train input set is used to train compiler/architecture in case profiling
is desired. The reference input set is intended to give a complete
evaluation of the host computer system’s performance. Thus, we use
the train input set during our profiling stage and reference input set
for reporting our results. We assume perfect memory and large enough
input queue buffers. Note that WaveScalar [12] also assumes perfect
L1 data cache and unbounded input queues. In addition, TRACE
simulation [20] is also similar to this approach.

Since our dataflow computer has no speculation, we estimate the
total execution time of a given application as follows4: The estimation
is based on the number of times each DFG node and edge are executed.
For each path p ∈ G, the execution time of p, denoted exec(p) and
measured in clock cycle, is computed as follows:

exec(p) =
∑

e(u,v)∈p
{freq(e) · (delay(u) + delay(e))} .

freq(e) denotes the access frequency collected during the profiling.
delay(u) denotes the computation latency of a DFG node u, which
is dependent on the complexity of the ALU operation u performs
(i.e., a part of dataflow machine specification). delay(e) denotes the
communication delay incurred during the transportation of the operand
generated by u to the input operand queue of v, which is the sum of the
delay values of the routing switches and wires along the u→ v path.
Then, the total execution time is estimated as follows:

tot_exec = max {exec(p)|∀p ∈ G} . (1)

4The total execution time is not to be confused with total runtime in this
paper. The total execution time refers to the total number of clock cycles needed
to finish executing the given DFG on a target dataflow machine, which is
heavily dependent upon the quality of DFG mapping solution. The total runtime
refers to the total elapsed CPU time to complete the DFG mapping process,
which is heavily dependent upon the efficiency of the mapping algorithms. We
report both metrics in Section V.

3020 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

Fig. 3. Overview of our ILP-based hierarchical DFG mapping algorithm that
consists of DFG clustering, placement, and routing.

In other words, we compute the weighted longest path delay from a
mapped DFG, where the access frequency information is used as the
weight on each DFG edge. Our path analysis is based on the standard
DFS-based longest path calculation, where the nodes are visited in a
topological order for their weighted path lengths computation. This
algorithm runs in O(n) due to the depth-first search. Note that this
approach also handles cycles in DFG naturally. Since our profiling
determines the number of times a given cycle is executed from a given
input set, our weighted path length calculation accurately computes the
total execution time of each path.

Note that there exist FFs on the intracluster/intercluster communi-
cation channels. This means the clock period of the target dataflow
machine is fixed. Thus, the goal of our DFG mapping process is to
minimize the total number of clock cycles required to evaluate the
DFG as described in (1). DFG placement and routing determines
which set of routing switches and wires is mapped to each DFG edge.
This in turn determines the delay (i.e., total clock cycles) of each edge
(i.e., communication) in the DFG. Our approach to minimize the total
DFG execution time is by placing the frequently communicating DFG
nodes closer together and route them using as few switches/wires as
possible. The minimization of pure wirelength, which is the distance
between the source and sink node of each edge in a mapped DFG,
does not necessarily translate to the total execution time reduction
since some DFG edges are not used as often as others during the DFG
execution. This is why our “profile-aware” wirelength introduced in
Section IV-B. is proven to be more effective.

IV. DFG MAPPING ALGORITHM

A. Overview of the Algorithm

An overview of our hierarchical ILP-based placement and routing
algorithm is shown in Fig. 3. Due to the size of the DFGs being con-
sidered, it is infeasible to optimally solve the mapping problem using
ILP. Therefore, our DFG mapping algorithm is based on a clustering
paradigm. At each stage, except clustering, the solution is found using
the ILP formulations. The first step in our algorithm is clustering the
DFG. Then, the DFG clusters are mapped to architectural clusters.
This is followed by intercluster routing. Next, the DFG nodes in
each cluster are individually mapped onto architectural elements while
taking into consideration terminal propagation information available
from the prior cluster-level placement and routing stage. This mitigates
much of the nonoptimality introduced during the clustering process.5

Finally, intracluster routing is done to obtain the final solution. Fig. 4
shows an illustration of our hierarchical DFG mapping process.

5A quantitative study on exactly how much of nonoptimality our clustering
stage introduces is interesting but not within the scope of this paper.

Fig. 4. Illustration of DFG mapping. (a) Sample assembly code. (b) Its DFG
and clustering. (c) Placement and routing at cluster level. (d) Placement and
routing at element level.

B. Profile-Weight Computation

Our C-code simulation discussed in Section III-D is used to collect
profile information. This information allows us to compute profile
weight for each edge in the corresponding DFG as follows:

p_wgt(e) =

{
freq(e)
max _freq

}k

(2)

where p_wgt(e) is the profile weight of edge e, and freq(e) is the
access frequency of e(x, y), i.e., the total number of times the ins-
truction i has provided operands to instruction j during the C-code
simulation. max _freq is the maximum among all freq(e) values.
These p_wgt(e) values are used during the entire DFG mapping
process including clustering, placement, and routing to minimize the
total execution time. The weights in the above equation are normalized
and then raised to a variable power factor. Related experiments showed
that k = 5 was an empirically good choice for the power factor. This
power factor had the effect of pushing weights that were close to
zero even closer to zero. This effects the solution by concentrating
computational effort more on the edges that have the highest weight.
DFGs characteristically have large dispersion among profiled weight
[0–10 000]; thus, the power factor ensures that only edges that have
a large impact on execution time are considered. The total simulation
time depends on the size of DFG as well as the input sets.

A similar concept used in timing-driven ASIC/FPGA placement
is “net weighting” [21], [22]. In this method, static timing analysis
is performed to compute timing slack for each circuit element, which is
then used to compute weights for each net so that the nets with smaller
(or even negative) slacks are given higher weights (i.e., priority). The
placement engine then tries to minimize the weighted wirelength so
that the delay along the timing critical nets is reduced. The goal
of timing-driven net weighing is the same as that of our profile-
weighing scheme, where we identify and tackle performance-critical
communication paths. However, our profile weight is not based on

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 3021

Fig. 5. Illustration of DFG clusters. (a) Single DFG cluster with eight
arithmetic, eight memory, and 12 multiplexing DFG nodes packed together.
(b) These DFG clusters can be mapped to anywhere on the target dataflow
machine, i.e., they are under no type constraint.

timing analysis but on application simulation using program input sets.
In addition, timing analysis is typically performed several times to
update the changes on the placement, whereas the profile weights are
typically computed only once before DFG placement starts. Finally,
the profiling result is heavily dependent on the characteristics of input
set so that the mapping solution quality may be poor if the input set
fails to represent the program behavior correctly.

C. Clustering Algorithms

There exist two kinds of architectural clusters in our dataflow
machine: arithmetic and memory. Thus, it is possible to pack eight
arithmetic and four multiplexing DFG nodes into an “arithmetic
cluster” and four memory and four multiplexing DFG nodes into a
“memory cluster.” Instead, we pack eight arithmetic, eight memory,
and 12 multiplexing DFG nodes into a single cluster, as illustrated in
Fig. 5. The reason is that these single type clusters can be mapped
to anywhere on the target dataflow machine without any architectural
cluster type constraint. This reduces the number of constraints used in
ILP formulation, which in turn translates to faster runtime.

Three different clustering algorithms, i.e., random, edge-
separability based (ESC) [23], and greedy, were investigated for
solution quality. A good clustering solution is one that sufficiently
utilizes each architectural cluster while retaining routability and
minimizing impact upon the optimality of the placement solution.
Type constraints were met during the clustering process to ensure that
each cluster was mappable to any architectural cluster. In random
clustering, the DFG nodes were randomly assigned to architecture
clusters as long as it was feasible to add that node considering space
and type constraints. In greedy clustering, the DFG nodes were first
ordered by highest profiling frequency on incident edges. The list was
then iterated through from largest weight to smallest weight. In each
iteration, the current cluster was combined with the node connected to
it with the highest profiling frequency until that cluster was full. ESC
is an advanced clustering algorithm that clusters the graph using an
ordering of the edges based on a metric related to the mincut.

For both ESC and greedy clustering, a post process was done
that compared all pairs of clusters to determine whether or not they
could be combined considering space constraints. This post process
improved the utilization of the architectural clusters while simplifying
the top-level cluster placement. Because utilization of the architectural
clusters is high when using all the clustering algorithms, this post
cluster merging process did not detectably alter wirelength.

D. ILP-Based Placement Algorithm

The basic idea behind the ILP placement formulation is to minimize
weighted wirelength using Manhattan distance and a mapping matrix

while following the type constraints. The parameters used in the
ILP-based placement formulation are defined as follows.

1) V is the set of DFG nodes, and E is the set of directed edges,
where edge (i, j) represents an edge from DFG node i to j.

2) N is the set of architectural nodes.
3) Ci,j is the profile-weighted Manhattan distance between DFG

node i and j, where Pi,j andQi,j are the horizontal and vertical
components of Ci,j , respectively.

4) Map is a mapping matrix, where rows are associated with DFG
nodes, columns are associated with architecture nodes, and a 1 in
position i, j implies that DFG node i is mapped to architecture
node j.

5) λi,j is the statistical traffic on DFG edge (i, j) collected by the
compiler.

6) type(Vi) is the type of DFG node i, and type(Nj) is the type of
architectural node j. There exist three types of DFG nodes and
architectural nodes: arithmetic, memory, and multiplexing.

7) cj is the capacity of architectural node j. Each arithmetic cluster
in the architecture can contain eight arithmetic-type DFG nodes
and four multiplexing-type DFG nodes. Each memory cluster in
the architecture can contain four memory-type DFG nodes and
four multiplexing-type DFG nodes.

8) Xj is the x position of architectural node j, and Yj is the
y position of architectural node j.

Our ILP-based DFG placement is formulated as follows:

Minimize
∑
(i,j)∈C

Cij (3)

subject to

mapi,j = {0, 1}, i ∈ V, j ∈ N (4)∑
j

mapi,j =1, i ∈ V, j ∈ N (5)

∑
i

mapi,j ≤ cj , i ∈ V, j ∈ N (6)

∑
mapi,j ≤ 0, type(Vi) �= type(Nj). (7)

For given i, j ∈ V and k, l ∈ N , we compute the profile-weighted
wirelength as follows:

Pi,j =
∑
k,l

[
λi,j ∗ (mapi,k ∗Xk − mapj,l ∗Xl)

]
(8)

Qi,j =
∑
k,l

[
λi,j ∗ (mapi,k ∗ Yk − mapj,l ∗ Yl)

]
(9)

Ci,j = |Pi,j −Qi,j |. (10)

The first constraint forces the integrality of the mapping matrix.
Constraint (5) guarantees that each DFG node is mapped to exactly one
architectural node. Constraint (6) guarantees that each architectural
node has at most its capacity mapped to it. The matrix P corresponds
to the weighted X distance between two modules, whereas the matrix
Q corresponds to the weighted Y distance between two modules.
Finally, (7) ensures that type constraints are observed when finding
a solution.

3022 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

There exist two differences between cluster-level and element-level
ILP placements. First, the type constraint (7) is ignored during cluster-
level placement as explained in Section IV-C, whereas element-level
placement strictly enforces this constraint. Second, terminal propaga-
tion detailed in Section IV-F is only used during element-level ILP
placement. In case the λi,j term is omitted from (8) and (9), the
previous ILP formulation becomes pure wirelength-driven placement,
which is used in our comparative study presented in Section V.

E. ILP-Based Routing Algorithm

The parameters used in the ILP-based routing formulation are
defined as follows.

1) V is the set of DFG nodes, and E is the set of directed edges,
where edge (i, j) represents an edge from DFG node i to j.

2) N is the set of architectural nodes.
3) Let flow be an electronic signal flow sending from source to

sink, where rows and columns are associated with architecture
nodes based on each path. fi,j,k is set to 1 if there is a flow from
architecture node i to architecture node j on DFG edge k, and 0
otherwise.

4) λk is the statistical traffic on DFG edge k.
5) ci,j is the capacity of architectural channel i, j. Note that ci,j is

equal to cj,i.
6) bi,k is the summation of all flows into and out of architectural

node i for DFG edge k.

Our ILP-based DFG routing is formulated as follows:

Minimize
∑
(i,j,k)

λk · fi,j,k (11)

subject to∑
i,j,k

fi,j,k + fj,i,k ≤ci,j , i, j ∈ A, k ∈ E (12)

∑
l

fi,l,k−
∑
j

fj,i,k = bi,k ≤
∑
m

ci,m, i ∈ N, j ∈ A (13)

fi,j,k ≥ 0 (14)

λi,j ≥ 0. (15)

This ILP-based routing formulation is based on multicommodity
flow formulation. The objective is to minimize the number of hops
required when routing from a source node to a sink node while
maintaining the channel capacity constraint. From the formulation,
constraint (12) guarantees that the inflow and outflow of each wire
channel do not exceed the capacity limit. Constraint (13) guarantees
that the inflows are equal to the outflows for all nodes in the route
and equal to 1 for the supply node and −1 for the demand node.
Only the supply node can have the surplus outflow, and only the
demand node can have the surplus inflow. The inflow is equal to the
outflow for the intermediate nodes. The profile-weighted wirelength
is the minimization objective. The previous ILP formulation is used
for both cluster-level and element-level routings. In case the λi,j term
is omitted from (11), the previous ILP formulation becomes pure
wirelength-driven routing, which is used in our comparative study
presented in Section V.

F. Terminal Propagation

During the element-level placement, the DFG nodes in each DFG
cluster are placed on arithmetic or memory element based on its type.
Some of the DFG nodes to be placed may have connections to other

Fig. 6. Illustration of terminal propagation algorithm. (a) Cardinal style.
(b) Dispersed style.

DFG nodes outside the current DFG cluster under consideration. In
this case, the placement of these external neighboring nodes can be
exploited to reduce interconnect length. More specifically, if there is a
DFG node n that has many connections to other DFG nodes placed to
the left, placing n closer to the left boundary of the target architectural
cluster instead of other location will reduce the overall wirelength.
This concept, so-called “terminal propagation” [24], is frequently used
in partitioning-driven placement approach for VLSI circuits.

Two styles of terminal propagation are studied: 1) cardinal and
2) dispersed. Fig. 6 illustrates these two styles. Cardinal style places
four terminals on the top, bottom, left, and right sides of the target
architectural cluster C. If an external neighbor j of a DFG node i ∈ C
is located above C, a single top terminal Tt is used to represent j.
Tt then pulls i closer to the top boundary ofC. In dispersed cycle style,
the actual location of the external neighbors is used as the terminal
location. After all terminal locations are defined, the location of these
terminals is added to the ILP formulation as additional constraints. In
case of cardinal style, we add the following constraints for a given
DFG node i in architectural cluster C, i.e.,

mapj,k=1, ∀j �∈C and e(i, j)∈E, k∈{Tt, Tb, Tl, Tr}

where Tt, Tb, Tl, and Tr denote the top, bottom, left, and right
terminals for C. These terminals are located at the center of the
architectural clusters directly above, below, to the left, and to the right
of C. Note that the above equations are added for each DFG node in
C. In case of dispersed style, we add the following constraints for a
given DFG node i in architectural cluster C:

mapj,k = 1, ∀j �∈ C and e(i, j) ∈ E, k ∈ V

where k is the arithmetic cluster j placed into (during cluster-level
placement), and j is the external neighbor of i. After the related
constraints are added, the placement is carried out while trying to
minimize the weighted wirelength connecting not only the internal
DFG nodes but also the external neighbors.

G. Example

This section provides an example of our C-to-mapping flow. We are
trying to map the following C-code:

for (i = 0; i < 10; i++) {
if (i < 5)

sum = sum+ 1;
else

sum = sum+ 2;
}.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 3023

Fig. 7. (a) DFG of our sample C-code, where the gray nodes represent
multiplexing nodes. (b) Its mapping, where nodes x2 and x3 (hidden under
x1 and x4) are mapped to the arithmetic cluster.

TABLE I
APPLICATION CHARACTERISTICS

The above C-code is compiled to the following assembly program:

r0 < −0;
r1 < −i;
r2 < −sum;
add r1, r0, r0;
ld r2, sum;

loop : bge r1, 5, br1;
add r2, r2, 1;
jmp br2;

br1 : add r2, r2, 2;
br2 : add r1, r1, 1;

blt r1, 10, loop;
st r2, sum.

Fig. 7 shows the corresponding DFG and its mapping.

V. EXPERIMENTAL RESULTS

The framework was run on Pentium IV 2.4-GHz dual processor
systems. It was written using a combination of C++ compiled with g++
version 3.2.2 and perl scripts using perl version 5.8.0. Table I illustrates
the characteristics of our SPEC2000 benchmark applications. We
report: 1) the name of the function that is selected; 2) the number of

arithmetic nodes (#ao), total nodes (#nodes), and edges (#edges) in
each DFG; and 3) the dimension of the target dataflow machines used
in terms of the number of arithmetic clusters (#aclusters). Our DFGs
are derived based on the functions that most capture the benchmark
behavior reported in [25].

Throughout the experiment, wirelength was measured in terms of
Manhattan distance as discussed in Section III-C. The total execu-
tion time was measured in terms of million clock cycles (the clock
frequency is fixed throughout our experiment). The total runtime was
measured in seconds. Since the target dataflow machine is fixed, our
wirelength results are not meant to imply routing cost. Instead, our
wirelength is used in our placement to improve the overall execution
time of DFG. In addition, a shorter wirelength translates to lower usage
of routing resource (wires and switches), which in turn translates to
lower communication delay and power consumption.

The solutions to the ILPs were found using the GNU Linear
Programming Kit [26] version 4.5 glpsol executable. While finding
the optimal solution, the linear program solver first finds a linear
optimal solution and then attempts to make the solution integral.
Because the linear solution can be equal to zero in some cases, the
integer optimization step could iterate through every possible solution
before giving up, which would cause the runtime to be extremely long.
Therefore, it was necessary to limit the runtime to 1 h per ILP for
standard and 2 h per ILP for larger cases. Typically, the solver iterates
around the same minimum value for millions of iterations before being
terminated; thus, we believe the nonoptimality introduced by this time
limit is negligible.

ILP problems can be solved near optimally. Thus, the largest factor
introducing nonoptimality in the solution algorithm is the clustering
process. A comparison of the three clustering algorithms is given in
Table II. It can be seen that the random clustering algorithm produces
solutions that are significantly worse in execution time than that of the
best result. Wirelength is also significantly worse and is in many cases
unroutable because of this. This is due to the fact that the random
clustering algorithm frequently places nodes connected with edges in
different clusters, whereas ESC and the greedy clustering algorithm
specifically target nodes connected by edges for clustering. When
comparing ESC versus greedy clustering, it can be seen that greedy
clustering produces slightly worse solutions in terms of execution
time. This is explained when one analyzes the wirelength numbers and
sees that ESC generally has better wirelength. We use ESC clustering
for all subsequent experiments.

When comparing the number of clusters, it is very noticeable
that the three different clustering algorithms produce exactly equal
numbers of clusters. When comparing greedy and random clustering,
this is very probable because both algorithms simply pack nodes into
clusters until more nodes cannot be fit. When delving further into the
subject, it is revealed that DFGs are forests and that the number of
nodes in each tree of the forest could be as small as one. These nodes
with no edges correspond to control instructions or no-ops inserted by
the compiler that do not have data dependencies with the rest of the
instructions. Because of the forest-like nature of DFGs, both ESC and
greedy clustering will arrive at similar numbers of clusters if a large
percentage of trees in the forest is of sufficiently small size so as to fit
into a single architectural block. This will be only compounded by the
post process. However, our analysis shows that although the number
of clusters is the same, the size and nodes of each cluster are different
between all the algorithms.

A comparison of ILP-based profile-driven versus wirelength-
driven placement (Table III) and routing (Table IV) is given in their
respective tables. Our baseline algorithm is wirelength-driven algo-
rithms, where the objective functions do not utilize the profile weights.
Our profile-driven placement algorithm outperforms the traditional

3024 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006

TABLE II
IMPACT OF CLUSTERING. WE REPORT TOTAL NUMBER OF CLUSTERS FORMED (#CLUST), WIRELENGTH (WIRE), EXECUTION TIME (EXEC),

AND TOTAL ELAPSED CPU TIME (IN SECONDS) ALL AFTER ROUTING. WE USE OUR PROFILE-DRIVEN ILP PLACER

TABLE III
ILP PLACEMENT RESULTS BASED ON PURE WIRELENGTH OBJECTIVE

VERSUS PROFILE-WEIGHT OBJECTIVE. WE REPORT THE TOTAL

EXECUTION TIME WITHOUT INTERCONNECT LATENCY

UNDER “NO WIRE” COLUMN

TABLE IV
ILP ROUTING RESULTS BASED ON PURE WIRELENGTH OBJECTIVE

VERSUS PROFILE-WEIGHT OBJECTIVE. OUR LP-BASED ROUTING

RESULT SERVES AS A LOWER BOUND

wirelength-only-driven algorithm by 14% in average execution time
calculated before routing was done. Our profile-driven router out-
performs the traditional router by 21% in average execution time
calculated after routing was done. The wirelength is almost tripled
in benchmark “mcf” in Table III. However, the total execution time
is reduced by 40%. This is a strong evidence that the profiling
information available from DFG simulation, not pure wirelength, is
more effective in reducing the overall execution time of DFGs. The
benchmark “bzip2” is a similar example.

In most benchmarks, CPU time of profile-driven ILP-based place-
ment is less than that of wirelength-driven ILP-based placement.
Some paths in the given DFG are rarely executed compared to other
frequently executed paths. The “for” and “while” loops are a good
example of frequently executed paths. This causes the profile weight
on rarely executed paths become very small or sometimes zero after
the normalization discussed in (2). The presence of zero weight edges
typically improves the runtime of ILP-based methods since these edges
are ignored during the computation. Upon inspection, one will notice
that “gzip” has longer execution time for the profiling case. This occurs
because our profiling method relies on capturing real data behavior.

TABLE V
SA [27] VERSUS ILP-BASED DFG PLACEMENT

If the data change drastically from the training input set, then profiling
may have negative impact on performance.

Table III provides the total execution time when the interconnect
latency is completely ignored, i.e., we consider the computation delay
only. Since the interconnect latency is determined by the placement,
this result serves as a lower bound on the placement quality. We note
from Table III that our profile-driven placer obtains results that are
within 30% of this lower bound.

Table V shows a comparison between our ILP-based DFG place-
ment and SA-based DFG placement [27]. In SA-based placement, we
use either the pure wirelength or profile-weighted wirelength as our
objective.6 We draw two major conclusions from Table V. First, the
profile-driven methods (SA + profile and ILP + profile) improve the
total DFG execution time results of nonprofile method (SA + wire)
by 17% and 21% on average. This shows that it is critical to utilize the
profile information to improve the total DFG execution time. However,
wirelength has increased by 27% in SA + profile. We note that the
range of profile-based edge weights is quite huge: [0, 10 000]. This in
turn causes a huge wirelength penalty in our profile-driven placement.
Second, ILP+ profile improves the wirelength results of SA+ profile
by 32% on average. A shorter wirelength translates to lower usage of
routing resource (wires and switches), which in turn translates to lower
communication delay and power consumption. Thus, the combination
of both profile information and ILP approach is proven to be effective
in both wirelength and execution time optimization. Note that the
ILP-based results are suboptimal for some benchmarks due to the
nonoptimality introduced by the clustering stage. This explains why
ILP-based approach generates worse results than SA-based approach
for some benchmark.

Table VI compares the two styles of terminal propagation: cardinal
style and dispersed style. The table shows that both techniques provide
a comparable result. However, cardinal style requires only four addi-
tional pseudo nodes and easier to implement.

6To the best of our knowledge, the work presented in [27] is the only existing
work that allows a meaningful comparison.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 12, DECEMBER 2006 3025

TABLE VI
IMPACT OF TERMINAL PROPAGATION. WE USE

OUR PROFILE-DRIVEN ILP PLACER

VI. CONCLUSION

Configurable dataflow architectures recently became more popular
due to their ability to extract more parallelism and reduce the impact of
wire delay. In this paper, we proposed ILP-based placement and rout-
ing algorithms that use clustering to reduce problem complexity while
still retaining solution quality. The optimization process is guided
by profiling information available from the compiler. Our goal is to
minimize the total execution time of the given application represented
by a DFG under architectural constraints. Our profile-driven ILP
algorithm reduces the total execution time of benchmark applications
compared to the conventional wirelength-driven ILP approach and
outperforms SA-based approach.

Our proposed solution is not without limitation. First, the half-
perimeter bounding box (HPBB) metric used in our placement is not
accurate due to the diagonal intercluster routes and nontrivial intra-
cluster routes. The rationale behind our choice of HPBB is that the
shorter distance between the source and sink nodes tends to require less
routing resources and thus reduce the delay. However, the actual delay
depends on the detailed routing result. Thus, an integrated placement
and routing approach will provide more accurate routing resource us-
age to guide placement but at the cost of longer runtime. One problem
with ILP-based approach is that it does not scale well with the size of
the problem. One possible solution is to relax the integer constraints,
solve LP, and apply a rounding heuristic to obtain integer results. We
can optionally iterate the LP + rounding until we obtain satisfactory
results.

REFERENCES

[1] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
May 1983.

[2] S. Thakur, Y.-W. Chang, D. Wong, and S. Muthukrishnan, “Algorithms for
an FPGA switch module routing problem with application to global rout-
ing,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 16,
no. 1, pp. 32–46, Jan. 1997.

[3] L. Behjat and S. Chiang, “Fast integer linear programming based models
for VLSI global routing,” in Proc. IEEE Int. Symp. Circuits Syst., 2005,
pp. 6238–6243.

[4] Z. Li, W. Wu, and X. Hong, “Congestion driven incremental placement
algorithm for standard cell layout,” in Proc. Asia and South Pacific Des.
Autom. Conf., 2003, pp. 723–728.

[5] M. Narasimhan and J. Ramanujam, “Improving the computational perfor-
mance of ILP-based problems,” in Proc. IEEE Int. Conf. Comput.-Aided
Des., 1998, pp. 593–596.

[6] X. Yang, R. Kastner, and M. Sarrafzadeh, “Congestion reduction during
placement based on integer programming,” in Proc. IEEE Int. Conf.
Comput.-Aided Des., 2001, pp. 573–576.

[7] J. B. Dennis, “A preliminary architecture for a basic dataflow processor,”
in Proc. IEEE Int. Symp. Comput. Architecture, 1975, pp. 126–132.

[8] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama, and T. Yuba, “An archi-
tecture of a dataflow single chip processor,” in Proc. IEEE Int. Symp.
Comput. Architecture, 1989, pp. 46–53.

[9] V. Grafe, G. Davidson, J. Hoch, and V. Holmes, “The epsilon
dataflow processor,” in Proc. IEEE Int. Symp. Comput. Architecture, 1989,
pp. 36–45.

[10] G. Papadopoulos and D. Culler, “Monsoon: An explicit token-
store architecture,” in Proc. IEEE Int. Symp. Comput. Architecture,
1990, pp. 82–91.

[11] K. Sankaralingam et al., “Exploiting ILP, TLP, and DLP with the poly-
morphous TRIPS architecture,” in Proc. IEEE Int. Symp. Comput. Archi-
tecture, 2003, pp. 422–433.

[12] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in
Proc. IEEE Micro, 2003, pp. 291–302.

[13] J. J. Granacki and M. Vahey, “MONARCH: A high performance embed-
ded processor architecture with two native computing modes,” in Proc.
High Performance Embedded Comput., 2002.

[14] M. Taylor et al., “Evaluation of the raw microprocessor: An exposed wire
delay architecture for ILP and streams,” in Proc. IEEE Int. Symp. Comput.
Architecture, 2004, pp. 2–13.

[15] J. Cardoso, “On combining temporal partitioning and sharing of func-
tional units in compilation for reconfigurable architectures,” IEEE Trans.
Comput., vol. 52, no. 10, pp. 1362–1375, Oct. 2003.

[16] K. Purna and D. Bhatia, “Temporal partitioning and scheduling data flow
graphs for reconfigurable computers,” IEEE Trans. Comput., vol. 48,
no. 6, pp. 579–590, Jun. 1999.

[17] R. Nagarajan, S. Kushwaha, D. Burger, K. McKinley, C. Stephen, and
W. Keckler, “Static placement, dynamic issue (SPDI) scheduling for
EDGE architectures,” in Proc. Int. Conf. Parallel Architecture and
Compilation Tech., 2004, pp. 74–84.

[18] Trimaran. [Online]. Available: http://www.trimaran.org
[19] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann,

“Effective compiler support for predicated execution using the hyper-
block,” in Proc. IEEE Micro, 1992, pp. 45–54.

[20] H. Khalid, “Validating trace-driven microarchitectural simulations,” IEEE
Micro, vol. 20, no. 6, pp. 76–82, Nov./Dec. 2000.

[21] T. Kong, “A novel net weighting algorithm for timing-driven placement,”
in Proc. IEEE Int. Conf. Comput.-Aided Des., 2002, pp. 172–176.

[22] A. Marquardt, V. Betz, and J. Rose, “Timing-driven placement for
FPGAs,” in Proc. Int. Symp. Field Programmable Gate Arrays, 2000,
pp. 203–213.

[23] J. Cong and S. K. Lim, “Edge separability based circuit cluster-
ing with application to multi-level circuit partitioning,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 3, pp. 346–357,
Mar. 2004.

[24] A. Dunlop and B. Kernighan, “A procedure for placement of standard-cell
VLSI circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. CAD-4, no. 1, pp. 92–98, Jan. 1985.

[25] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically
characterizing large scale program behavior,” in Proc. ASPLOS-10, 2002,
pp. 45–57.

[26] GLPK, GLPK (GNU Linear Programming) Kit. [Online]. Available:
http://www.gnu.org/software/glpk/glpk.html

[27] M. Ekpanyapong, M. Healy, and K. Lim, “Placement for configurable
dataflow architecture,” in Proc. Asia and South Pacific Des. Autom. Conf.,
2005, pp. 1127–1130.

