
Effective Thermal Via and Decoupling Capacitor Insertion For 3D System-On-Package

Eric Wong, Jacob Minz, and Sung Kyu Lim
School of Electrical and Computer Engineering

Georgia Institute of Technology, Atlanta, GA 30332, USA
{ewong, jrminz, limsk}@ece.gatech.edu

Abstract— The increased component density of a 3D System-
On-Package (SOP) exacerbates the thermal hotspot problem. A
popular choice to mitigate the thermal issues is thermal vias
(t-vias) that are used to establish thermal paths from the core
of an SOP package to the heat sinks. Another major problem
with SOP integration is the power supply noise coupling among
various mixed signal components constituting the system. In
this case, decoupling capacitors (decaps) are inserted to provide
the switching currents locally. The goal of our automatic 3D
SOP component placement algorithm is to determine the x/y/z
location of each component while minimizing the footprint area
under thermal and power supply noise constraints. In general,
t-vias and decaps are typically inserted in the white space in the
placement, whereas the proximity of the t-vias and decaps to
the target components determines their effectiveness. Hence, our
component placer considers t-via and decap insertion during the
early design stage, where the component location can be flexibly
changed. Related experiments demonstrate the effectiveness of
our approach.

I. INTRODUCTION

The increased component density of a 3D System-On-
Package (SOP) structure exacerbates the thermal hotspot prob-
lem. That is, more devices packed into a smaller footprint
result in a higher maximum temperature. A popular choice to
mitigate the thermal issues is thermal vias (t-vias) that are
used to establish thermal paths from the core of an SOP
package to the heat sinks. Another major problem is the
power supply noise coupling among various mixed signal
components constituting the system. Due to the low noise
floor required for analog components, considerable power
supply noise primarily generated by the high-speed digital
components occurs through the common inductive impedance
of the power/ground return current path. A popular choice to
mitigate the power supply noise issues is decoupling capacitors
(decaps) that are used to provide the switching currents locally.

The goal of our automatic 3D SOP component placement
algorithm is to determine the x/y/z location of each component
while minimizing the footprint area under thermal and power
supply noise constraints. We note that the placement of com-
ponents has a significant impact on the amount of thermal
vias and decaps required. This is because the temperature
of each component depends heavily on thermal coupling
with neighboring components. In addition, the simultaneous
switching noise (SSN) level of each component is affect by
the noise coupling with neighboring components as well as
the distance to power supply pins. Lastly, the effectiveness
of t-vias and decaps depends on the location of white space
(WS), which is determined by the component placement. This
is because t-vias and decaps are typically inserted in the

WS, whereas the proximity of the t-vias and decaps to the
target components determines their effectiveness. Hence, it is
important to consider t-via and decap insertion during the early
design stage, where the component location can be flexibly
changed.

The remainder of the paper is organized as follows. Section
II presents an overview of our algorithm. Section III and IV
respectively presents our thermal via and decoupling capacitor
insertion algorithms. Experimental results are presented in
Section V, and we conclude in Section VI.

II. OVERVIEW OF THE ALGORITHM

The effectiveness of decaps is maximized when the decaps
are located adjacent to the blocks that need them. This means
some existing whitespace (WS) is not accessible if surrounded
by the blocks that do not use it. In addition, any additional
WS inserted is required to be adjacent to the target blocks. On
the other hand, the effectiveness of t-vias is maximized when
the t-vias make straight connections between the top and the
bottom heat sinks. Since the components in each layer become
obstacles, t-vias can be inserted only at the location where WS
vertically overlaps in all layers. Moreover, the WS must be
added in all layers with some overlap in case additional WS
is desired. We employ a two-stage approach that consists of
stochastic optimization via Simulated Annealing followed by
an iterative t-via/decap insertion. The purpose of the SA-based
optimization is to obtain a 3D component placement solution
that requires the minimum amount of t-vias and decaps during
the next stage. The purpose of the detailed t-via/decap insertion
is to detect, insert, and allocate WS in an iterative manner until
the thermal and SSN constraints are met.

During the annealing process, we generate a candidate
3D component placement solution and evaluate it in terms
of area, thermal, and decap cost. We use a 3D mesh to
apply a finite difference approximation for thermal analysis.
Each node models a small volume of the SOP packaging
structure, and each edge denotes the connectivity between two
adjacent regions. Our matrix equation T = R · P computes
the temperature of each mesh node, where T , R, and P
respectively denote the temperature vector, thermal resistance
matrix, and power generation vector. Finally, the thermal cost
of a 3D placement is the maximum temperature among all
components. We use another 3D mesh to model the 3D
power/ground network. The edges in the mesh have inductive
and resistive impedances. The dominant path for a component
is the path from the nearest current source to the component
causing the greatest drop in voltage. Then, the SSN for a

1-4244-0152-6/06/$20.00 ©2006 IEEE 1795 2006 Electronic Components and Technology Conference

given component is the summation of IR drop and Ldi/dt
change (drop or increase) along its dominant path p. It is
possible that there exist several edges in p that are shared
with the dominant paths for other components. In this case,
the total sum of IR drop and Ldi/dt change on these shared
edges caused by the related components is used for the SSN
computation of individual components. The decap budget for
each component is computed according to its current demand
and SSN. Finally, the decap cost of a 3D placement is the total
decap budget among all components.

During our t-via/decap insertion step, we first detect the
existing WS in the 3D component solution. We formulate the
WS-to-component allocation problem using a network-flow
model, where we attempt to allocate WS for both t-via and
decap. The key constraint is that the WS for decaps needs to be
adjacent to the related components, where as the WS for t-vias
need to have vertical overlap in all layers. In case the existing
WS is not enough to suppress the SSN or temperature under
a given threshold, we insert additional WS while considering
the adjacency and vertical overlap requirements. Lastly, our
thermal/SSN analysis is performed to verify the effect of the
t-via/decap insertion and detect the next target components.
We extend the existing 2D placement encoding scheme named
Sequence Pair to 3D in such a way that it is easier to find a way
to slide the components in x/y directions so that the vertical
overlap among a certain set of WS is always maintained.

III. THERMAL VIA INSERTION

A. Thermal Model

A standard 3D thermal resistance mesh is used for thermal
analysis. Each node models a small volume of the 3D die stack
(substrate, heat sink, dielectric, metal, or transistor), and each
edge denotes the thermal conductivity between two adjacent
regions. This is equivalent to using a discrete approximation
of the steady state thermal equation −k∇2T = P , where k
is thermal conductivity, T is temperature, and P is power.
This results in the matrix equation G · t = p, where G is
a thermal conductivity matrix, p is a power vector, and t is
a temperature vector. One way to solve this matrix equation
would be to invert the matrix G−1 = R, which takes O(n3)
time. Then t can be calculated through matrix multiplication
t = R · p, which takes O(n2) time.

During thermal driven floorplanning, moving blocks around
does not significantly change the thermal conductivities. The
power profile changes are mainly responsible for the changes
in temperature. This allows the G matrix to be inverted to R
once in the beginning and reused for subsequent temperature
calculations. Only the power vector needs to be changed,
so temperature calculations only require one matrix multi-
plication. This allows the temperature of each floorplan to
be evaluated in O(n2) time rather than O(n3) time. This
method of reusing R is slightly inaccurate due to the fact
that the area of the floorplan will change, which causes slight
changes in thermal conductance between thermal grid cells.
When inserting thermal vias, however, thermal conductivities
change. This means that R cannot be reused, so directly

solving the matrix equation would take O(n3). This is much
too slow for use in integrated thermal via floorplanning. To
solve this problem we propose another method for calculating
temperature.

B. Random Walk-based Thermal Analysis

Random walks correspond to a classical problem in statis-
tics, and their use in solving linear equations dates back to
as early as the 1950s [1] [2] [3]. Recently, Qian et al. [4] [5]
applied the random walk concept to power grid analysis. In a
random walk game, a walker starts at a node in a graph with
a certain amount of money. The walker then randomly visits
a neighboring node. The probability of each neighbor being
visited is based on the weight of its edge to the current node.
At each node, the walker either receives a reward or pays a
toll. The walk ends when the walker reaches a home node and
the walker will have made or lost some money based on the
tolls paid and rewards collected.

The temperature of a thermal grid cell is calculated by
placing a walker with no money at the cell. First, the walker
will receive a reward of

r(i) =
pi∑d(i)

j gij

(1)

where pi is the power of the current cell i, d(i) is the edge
degree of cell i, and gij is the thermal conductance between
cell i and its neighbor j. The walker will then visit one of
its six neighboring cells. The probability of each neighbor j
being chosen from cell i is

p(i, j) =
gij∑d(i)

j gij

. (2)

At each step, the walker will receive a reward and visit another
neighbor. The walk ends when the walker hits a boundary
cell at this point the walker will receive the final reward r
= ambient temperature. The total amount of money collected
by the walker is an approximation of the temperature of the
cell that the walker started from. According to the Central
Limit Theorem, if many walks are performed and the results
are averaged, then the error is a zero mean Gaussian variable
with a variance inversely proportional to the number of walks
k. This gives a tradeoff between runtime and accuracy. The
runtime of the random walk is O(kmn), where k is the number
of walks per cell, m is the average length of a walk, and n
is the number of cells. Typically, k and m are much smaller
than n, so a random walk will run much faster than solving
the matrix equation G · t = p with a runtime of O(n3).

Several techniques can be used to speed up the random
walk-based thermal analysis. It is possible for a random walk
to wander around inside the thermal grid and not reach a
boundary cell for an extremely long time. To combat this
problem, a limit on the path length of a random walk mmax

is imposed. If mmax is set too low, then many random walks
will be cut short. Losing too many long walks will tend to
cause the calculated temperatures to be low. When mmax

is set high enough, few random walks will be affected and

1796 2006 Electronic Components and Technology Conference

the underestimation becomes negligible. The next speed up
technique is to create new home cells. When the temperature
of a cell is calculated, it becomes an additional home cell
with a reward equal to its temperature for subsequent random
walks starting elsewhere. The new homes cut down on the
average length of walks significantly. The temperatures of
individual cells can be calculated without having to solve the
entire thermal grid, which is done by performing random walks
starting from the cells of interest and not performing random
walks starting elsewhere. This is especially useful for thermal
via insertion since this allows the local impact of thermal vias
on a target hot-spot to be calculated without recalculating the
entire temperature profile.

C. Thermal Via Insertion Algorithm

An iterative method is used for thermal via insertion. First
the thermal grid cell with the highest temperature is found.
Then the target thermal conductivity of the cell is calculated
according to the formula

knew = kold · tcurr

ttarget
(3)

where kold is the current thermal conductivity of the cell, tcurr

is the current temperature of the cell, and t target is the target
temperature. The via density of the x-y location of the cell is
calculated with the formula

v = min
(

vmax, c · knew − kold

kvia − kold

)
(4)

where vmax is the maximum thermal via density, c is a
user defined constant, and kvia is the thermal conductivity
of a thermal via. Next, the thermal conductivities are updated
according to the thermal via density. Random walk is used to
calculate the temperature of the cells that the new vias pass
through as well as the temperature of adjacent cells. Then
another grid cell with the highest temperature is found and the
process repeats. This process is iterated until the maximum
temperature is less than the target temperature or when the
maximum number of iterations has been reached.

After thermal via insertion, blocks that occupy areas with
thermal vias need to be expanded to make room for the vias.
The average via density of a block is the amount that it will
expand by. Next, a sequence pair floorplan compaction calcu-
lation is used to update the location of the expanded blocks.
With updated block sizes and locations, a final temperature
calculation can be performed. If the via insertion is integrated
into the floorplanning, then the random walk thermal analyzer
is used for the temperature calculation. If the via insertion
is done as a postprocess, then the temperature is calculated
with the matrix thermal analyzer. The result of the thermal via
inserter is a 2-dimensional thermal via density map. Thermal
vias can then be placed according to the thermal via density
map, where they will be fixed obstacles during the placement
phase of physical design.

D. Integrated Floorplanning with Thermal Vias

The floorplanner is based on simulated annealing. An array
of sequence pairs was used to represent to solution space, with
one sequence pair per layer. Each move is made by modifying
the sequence pair. Then, the area of the floorplan and the
location of the blocks is calculated from the sequence pair
using an algorithm based on longest common subsequence [6].
The wirelength of a net is estimated by drawing a bounding
box around the blocks connected by the net and taking the
half perimeter of the bounding box. The temperature before
thermal via insertion is calculated using the fast matrix thermal
analyzer. Then thermal vias are inserted. The random walk
based thermal analyzer is used to calculate the temperature
after thermal via insertion. Then a weighted average of the
area, wirelength and temperature after thermal via insertion
is used as the cost function for the simulated annealer for
integrated thermal via floorplanning.

In area and wirelength driven floorplanning, the cost func-
tion is a weighted average of the area and wirelength. In
thermal driven floorplanning the cost function is a weighted
average of the area, wirelength, and temperature without vias.
When thermal vias are inserted for the final floorplan, the
matrix thermal analyzer is used to calculate the temperature
before and after thermal via insertion to ensure accurate final
results.

IV. DECOUPLING CAPACITOR INSERTION

A. 3D Power Supply Noise Modeling

We use a 3D grid to model the power/ground (P/G) network
for 3D SOP. Each P/G layer in the multi-layer structure is
represented as a mesh. The edges in the mesh have inductive
and resistive impedances. The mesh contains power-supply
points and connection points. The connection points consume
currents. The current is drawn from all the sources by the
consumers, and the amount of current drawn along a path
is inversely proportional to the impedance of the path in the
power supply mesh. The dominant current source for a block
is defined as the voltage source supplying significantly more
power to the block than any other neighboring sources. The
dominant path for a block is the path from the dominant supply
to the block causing the most drop in voltage. It has been
shown experimentally in [7] that the shortest path between
the dominant current source (nearest Vdd pins) and the block
offers highly accurate SSN estimation within reasonable run-
time. Let Pk be a dominant current path for block k. Then
T k = {Pj : Pj ∩ Pk �= ∅} denotes the set of all other
dominating paths overlapping with Pk (T k includes Pk itself).
Let Pjk be the overlapping segments between path Pj and
Pk. Let RPjk

and LPjk
denote the resistance and inductance

of Pjk . After the current paths and their values have been
determined for all blocks, the SSN for Bk is given by

V k
noise =

∑
Pj∈T k

(ij · RPjk
+ LPjk

dij
dt

)

1797 2006 Electronic Components and Technology Conference

WS1
WS2

a
b

d
e

c

Fig. 1. Whitespace detection. Blocks a, b, c are in the lower level. Blocks d,
e are in the next level. The bold line is the lower boundary, while the dotted
line is the upper boundary. ws1,ws2 are the detected white spaces.

where ij is the current in the path Pj , which is the sum of all
currents through this path to various consumers. The weight
of ij and its rate of change are the resistive and inductive
components of the path.

In the worse case, a module would draw all of its switching
current from its decap. Let Qk =

∫ ts

0
Ik(t) · dt denote the

maximum charge drawn from the power supply by block B k,
where Ik(t) is the current demand and ts is the switching
time. The decap budget can then be calculated as C k =
Qk/Vtol, 1 ≤ k ≤ M , where M denotes the total number
of blocks. This base decap budget is for the case where there
is no resistance between a block and its decap.

B. Whitespace Detection and Insertion

The white space present in a floorplan can be used to
fabricate decap. If the existing white space is insufficient
or unreachable by modules needing decap, then white space
insertion through floorplan expansion may be necessary. Hence
detection of all existing white spaces in a floorplan is highly
desirable. This is done by using the longest path tree calcula-
tion based on the vertical constraint graph. All nodes at the i th

level in the tree are at an edge distance of i from the source
node. Each level is ordered by the horizonal constraint graph.
The white spaces at level i are detected by comparing the
upper boundary of blocks at level i and the lower boundary
of the blocks at level i + 1. If the boundaries are not incident
on each other, then there is whitespace. In Figure. 1, blocks a,
b, c are in the same level and blocks d, e are in the next level.
The algorithm compares the upper boundary of a, b, c, to the
lower boundary of d, e. The mismatched boundaries allows
the algorithm to find white spaces ws1, ws2. This algorithm
is capable of detecting all white spaces, and runs in O(n)
time, given the ordered longest path tree, where n is the total
number of blocks. Typically, longest path tree calculations
from constraint graphs are used to convert sequence pairs into
floorplans.

If sufficient decap cannot be allocated from the existing
white space to suppress the SSN, then more white space is
added by expanding the floorplan in the X and Y direction
as illustrated in Figure 2. A naive approach is to look at
the additional decap needed for each layer and expand as
necessary, splitting the X and Y expansion evenly. However,
this does not take advantage of the 3D structure. Our Footprint-
aware area expansion algorithm finds the X and Y slack of

(a) (b) (c)

ws

Fig. 2. Illustration of 3D decap allocation. (a) 3D placement, (b) X-expansion,
(c) XY-expansion, where the darker blocks denote the neighboring blocks of
the decap (= white space) inserted. Note that blocks from other layers can
utilize the white space for decap insertion.

each layer relative to the footprint and expands in the direction
with more slack. If a particular layer is the bottle-neck layer,
i.e. it has maximum width and height, then some of the
expansion is shifted to adjacent layers. Allowing blocks to use
decaps in other layers is made possible by effective distance
[8].

Note that there may be iteration between decap allocation
and whitespace insertion before sufficient decap is allocated to
all blocks. The XY-expansion of each layer is controlled by α
and β parameters, where α and β are the percent expansions
in the X and Y directions. Simple expansion would set α and
β equal to each other. In footprint-aware expansion, the X and
Y slack of each layer are defined as Sx = Footprintwidth −
Layerwidth. Then the equation β/α = Sy/Sx is used to make
the white space insertion favor the direction with more slack.
After each iteration, the α and β are increased until the decap
demands are met.

C. Flow-based Decap Allocation

In this work, the decap allocation problem is modeled by
generalized network flow as illustrated in Figure 3. Generalized
network flow problems generalize traditional network flow
problems by adding a gain factor γ(e) > 0 for each arc e.
For each unit of flow that enters the arc, γ(e) units must exit.
For traditional network flows, the gain factor is one. Capacity
constraints and node conservation constraints are satisfied by
the generalized networks, as in traditional network flows. This
model accurately captures the decap allocation problem with
effective distance [8]. Generalized network flow is a well
studied problem, but elegant exact and approximate algorithms
have only been proposed recently [9].

The nodes on the left represent the blocks. The capacities of
the incoming edges are the decap demands of the blocks. The
costs of these edges are zero and the gains are unity. The nodes
on the right represent the whitespace modules. The capacities
of the outgoing edges are the areas of the whitespace modules.
The gains are unity, and the costs are set to one. If a circuit
module is close enough to draw decap from a whitespace
module, they are connected with an edge of infinite capacity,
zero cost, and gain factor γeff to represent the effectiveness
of the whitespace, based on distance. The gain factor of the
edge between a block and a white space is the amount of
area needed to satisfy unit decap. A min-cost maximum flow

1798 2006 Electronic Components and Technology Conference

γ = γ _eff

cap = area of white spacecap = decap demand

Spaces
White

cost = 0 cost = 1

Blocks

cap = infinity

b1

b2

b3

b4

b5

ws1

ws2

ws3

ws4

ws5

s t

γ = 1 γ = 1
cost = 0

Fig. 3. Network flow model for decap assignment

in this generalized network, allocates the maximum possible
decap and uses the minimum white-space area.

If the flow in the source edges are saturated, then the decap
demands of all the circuit modules can be met. Assigning
cost to the sink edges minimizes the use of the whitespace.
If the flow in some source edges are less than capacity, then
there is not enough whitespace to fulfill the decap demands
of the circuit modules. In this case the floorplan must be
expanded to add additional whitespace. In the 3D environment,
the smaller layers will be expanded first to avoid increasing the
footprint area of the entire package. This expansion can also
help circuit modules on other layers since the effective distance
formulation allows circuit modules to draw decap from other
layers.

V. EXPERIMENTAL RESULTS

The algorithms in the paper were implemented in C++. The
experiments were run on Pentium IV 2.4 Ghz dual processor
systems running linux. Ten GSRC benchmarks [10] were used.
The blocks were randomly assigned power densities between
106 W/m2 and 5 × 106 W/m2. All floorplans have four
placement layers.

A. Thermal Via Insertion Results

Table I shows the results of the AWF algorithm (area and
wirelength driven floorplanning) with thermal via insertion as
a postprocess. The eighth column shows what the temperature
of the floorplan would be if the floorplan were expanded
but thermal vias were not added. Floorplan expansion was
responsible for a temperature drop of approximately 4%, while
the increase in thermal conductivity due to thermal vias was
responsible for an additional 13% temperature drop. Average
thermal via density is the proportion of the area reserved for
thermal vias. Note that this is not necessarily equal to the area
expansion because the expansion of individual blocks is not
uniform. An average thermal via density of under 3% was able
to decrease temperatures by almost 17% while expanding the
area by less than 4% and increasing wirelength by only 1%.

Table II shows the results of the TDF algorithm (thermal
driven floorplanning) followed by thermal via insertion. In

(a)

(b)

hottest area

overlap creates
new hotspot

Active Blocks
White Space
Thermal Vias

Fig. 4. A three layer floorplan before thermal via insertion (a) and after
thermal via insertion (b). In this case, adding thermal vias expanded the block
in the middle layer and created a new hotspot.

half the cases, adding thermal vias actually increased the
temperature. The temperature without thermal via column
suggests the reason for this. The TDF tends to separate high
power blocks. The area expansion of blocks due to thermal
vias can cause the blocks to shift enough to bring some
high power density blocks closer together, which can increase
temperature. Figure 4 shows an example of this effect. The
increased thermal conductivity from the thermal vias can
sometimes make up for this effect, but often it cannot. TDF
without thermal vias is more effective at reducing temperatures
than AWF followed by thermal via insertion. However, TDF
has higher area due to looser module packing.

Table III shows the results of IVF algorithm (integrated ther-
mal via floorplanning). IVF solved the problem that TDF had
with thermal vias by being aware of thermal vias throughout
floorplanning. This allowed it to produce the lowest temper-
atures out of the three methods. We conclude the following
based on the three tables so far: adding thermal vias to AWF
reduced the temperature by 17% at a cost of 4% area expansion
and 1% wirelength increase. TDF without thermal vias reduced
temperature by 32% at a cost of 20% area increase and 5%
wirelength increase. Finally, IVF reduced temperature by 38%
at a cost of 47% area increase and 22% wirelength increase.
The thermal via density of IVF averages 2.5%, so most of the
area increase came from loose module packing.

B. Decoupling Capacitor Insertion Results

Table IV compares area/wirelength driven floorplanning
and decap driven floorplanning. For the large (200 block)
circuits, decap driven floorplans have better area than the
area/wirelength driven floorplans. However, this improvement
comes at the expense of wirelength. Having a 3D structure
has many benefits over 2D. The following observations can be
made from Table V. The wirelength decreases by 28% when
going from a single to double layered floorplan, and decreases
by 50% for a floorplan with four layers. The decap amount
decreases by 24% and 60% for double and quadruple layered
floorplans, respectively. Original area decreases by 48% and
72% when increasing layers to two and four. The reduction in
expanded area after decap allocation is slightly greater. This
suggests that 3D structures offer greater flexibility in decap

1799 2006 Electronic Components and Technology Conference

TABLE I

AREA AND WIRELENGTH DRIVEN FLOORPLANNING WITH THERMAL VIA INSERTION AS A POSTPROCESS.

before via insertion after area expansion
temp temp average

benchmarks area wirelength temp area wirelength w/ vias w/o vias via density time
n50 58491 91521 136.6 59309 91986 126.5 132.4 0.011 121
n50b 66490 87838 145.1 72564 90886 115.7 145.0 0.065 110
n50c 63666 92418 129.2 64251 92900 122.1 125.6 0.008 111
n100 57664 135970 123.6 61431 138729 92.3 113.6 0.046 193
n100b 49950 120431 112.9 51095 121297 98.0 112.2 0.013 408
n100c 53040 132142 128.8 54135 133800 95.4 117.6 0.027 251
n200 50190 215549 135.6 52472 218601 105.2 131.9 0.036 1407
n200b 55385 226447 125.9 57579 228792 103.7 123.6 0.031 887
n200c 52877 250970 123.6 53601 251855 110.8 120.8 0.011 643
n300 81340 313680 186.9 83801 316041 146.9 174.1 0.026 4395

RATIO 1.000 1.000 1.000 1.035 1.012 0.831 0.963 - -

TABLE II

THERMAL DRIVEN FLOORPLANNING WITH THERMAL VIA INSERTION AS A POSTPROCESS.

before via insertion after area expansion
temp temp average

benchmarks area wirelength temp area wirelength w/ vias w/o vias via density time
n50 62517 91363 120.7 66393 93772 98.5 118.3 0.057 852
n50b 68694 85173 118.1 71571 86781 130.8 144.2 0.042 1307
n50c 64532 91808 110.6 66912 93797 105.3 113.8 0.051 1106
n100 68480 142521 82.0 69541 143942 90.2 93.4 0.028 1708
n100b 61490 127801 84.8 63066 129821 81.8 96.2 0.052 2175
n100c 63745 138324 85.7 65655 139790 91.3 105.6 0.032 1425
n200 62220 270123 97.9 63406 271742 91.0 97.9 0.019 3389
n200b 70596 250672 69.1 72039 253473 105.1 109.7 0.051 5509
n200c 66150 250582 74.4 67874 252339 69.7 78.2 0.032 6202
n300 117600 334304 51.4 118397 335528 67.5 67.6 0.046 17659

RATIO 1.000 1.000 1.000 1.028 1.013 1.071 1.169 - -

TABLE III

INTEGRATED THERMAL VIA FLOORPLANNING

average
benchmarks area wirelength temp via density time
n50 86093 102425 94.1 0.035 9175
n50b 82925 94088 108.6 0.017 13107
n50c 80303 100013 86.8 0.050 8979
n100 83311 155972 87.7 0.007 16110
n100b 81893 148806 71.7 0.022 23514
n100c 81596 152045 76.4 0.020 24524
n200 74414 310017 75.8 0.029 29417
n200b 82599 284590 98.7 0.022 25140
n200c 77465 304035 68.7 0.022 32053
n300 136907 468086 56.4 0.027 47337

allocation. Decap decreases because the compact 3D structure
allows for shorter paths from blocks to power pins. For the
2D floorplans, there is a much larger area expansion for decap
allocation since footprint awareness is unavailable.

VI. CONCLUSIONS

We presented a component placer for 3D System-On-
Package that considers thermal via and decoupling capacitor
insertion during the early design stage, where the component
location can be flexibly changed. First, a fast approximation
algorithm for thermal analysis was presented. This thermal
analyzer was incorporated into an efficient thermal via inser-
tion algorithm. The thermal via inserter successfully lowered
temperatures with minimal thermal via densities. Integrating
thermal via insertion into the floorplanner resulted in lower
temperatures than inserting vias as a postprocess. Our placer

also aims at reducing the amount of decoupling capacitance
(decap) needed to suppress the simultaneous switching noise
without compromising traditional design metrics such as area
and wirelength. We performed footprint-aware decap insertion
to allow functional blocks to access decaps in other layers.

REFERENCES

[1] G. Forsythe and R. Leibler, “Matrix inversion by a monte carlo method,”
Mathematical Tables and Other Aids to Computation, 1950.

[2] W. Wasow, “A note on the inversion of matrices by random walks,”
Mathematical Tables and Other Aids to Computation, 1952.

[3] P. Doyle and J. Snell, “Random walks and electric networks,” Mathe-
matical Association of America, 1984.

[4] Q. H. Qian, S. Nassif, and S. Sapatnekar, “Random walks in a supply
network,” in Proc. ACM Design Automation Conf., 2003.

[5] Q. H. Qian and S. Sapatnekar, “Hierarchical random-walk algorithms for
power grid analysis,” in Proc. Asia and South Pacific Design Automation
Conf., 2004.

1800 2006 Electronic Components and Technology Conference

TABLE IV

AREA/WIRELENGTH-DRIVEN VS DECAP-DRIVEN 3D FLOORPLANNING. EFFECTIVE DECAP DISTANCE AND FOOTPRINT-AWARE DECAP INSERTION

SCHEMES ARE USED FOR BOTH.

area/wirelength-driven FA ED decap-driven FA ED
wire area area wire area area

ckt length decap before after length decap before after
n50 21541 17 22185 22185 25784 2 25258 25258

n50b 21065 11 23944 23944 22266 3 23828 23828
n50c 18505 10 18340 18340 21449 1 18720 18720
n100 54264 80 35148 35148 65470 52 36860 36860

n100b 40848 86 33990 34302 57145 53 33998 33998
n100c 53240 83 33286 33286 66365 50 36966 36966
n200 155370 235 67599 67751 173997 219 52948 54211

n200b 166159 244 68021 68636 182016 231 53352 54632
n200c 152917 242 63612 63917 171901 233 52675 52974
ratio 1.000 1.000 1.000 1.000 1.178 0.574 0.968 0.970
time 677 1894

TABLE V

IMPACT OF THE NUMBER OF PLACEMENT LAYERS. EFFECTIVE DISTANCE AND FOOTPRINT AWARENESS ARE USED.

single layer 2 layers 4 layers
wire area area wire area area wire area area

ckt length decap before after length decap before after length decap before after
n50 50764 66 83790 84959 36806 38 50052 50104 25784 2 25258 25258

n50b 45422 58 80032 81097 35662 27 45346 45346 22266 4 23828 23828
n50c 43081 61 66515 67089 35287 20 39780 39780 21449 1 18720 18720
n100 126017 137 128904 131217 92714 122 59787 60877 65470 52 36860 36860
n100b 106440 142 101985 106269 68810 116 60977 61080 57145 53 33998 33998
n100c 117112 145 130800 133164 88819 126 60977 62120 66365 50 36966 36966
n200 407024 279 198628 205829 249744 264 98820 102958 173997 219 52948 54211
n200b 354319 284 249066 256141 269754 271 102718 105962 182016 231 53352 54632
n200c 398234 288 190437 197270 245559 275 98245 101436 171901 233 52675 52974
ratio 1.000 1.000 1.000 1.000 0.718 0.757 0.524 0.519 0.499 0.401 0.282 0.277
time 1424 3222 1895

[6] X. Tang, R. Tian, and D. F. Wong, “Fast evaluation of sequence pair in
block placement by longest common subsequence computation,” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
2001.

[7] S. Zhao, C. Koh, and K. Roy, “Decoupling capacitance allocation and its
application to power supply noise aware floorplanning,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, pp. 81–92,
2002.

[8] E. Wong, J. Minz, and S. K. Lim, “Power Noise-aware 3D Floorplanning
for System-On-Package,” in Proc. IEEE Electrical Performance of
Electronic Packaging, 2005.

[9] Y. Tsai, A. Ankadi, N. Vijaykrishnan, M. Irwin, and T. Theocharides,
“ChipPower: An Architecture-Level Leakage Simulator,” in Proc. IEEE
Int. SOC Conf., 2004.

[10] GSRC, http://www.cse.ucsc.edu/research/surf/GSRC/GSRCbench.html.

1801 2006 Electronic Components and Technology Conference

