
QCA Physical Design With Crossing Minimization
Wook Jin Chung, Brian Smith, and Sung Kyu Lim

School of Electrical and Computer Engineering
Georgia Institute of Technology

limsk@ece.gatech.edu

Abstract— Quantum-dot Cellular Automata (QCA) is a novel
computing mechanism that can represent binary information
based on spatial distribution of electron charge configuration in
chemical molecules. QCA circuit layout is currently restricted to a
single layer with very limited number of wire crossing permitted.
Thus, wire crossing minimization is crucial in improving the
manufacturability of QCA circuits. The the focus of this paper
is to develop the first QCA physical design algorithms for wire
crossing minimization.

I. INTRODUCTION

One approach towards nano-scale computing is the quantum
dot cellular automata (QCA) concept that represents informa-
tion in a binary fashion, but replaces a current switch with
a cell having a bi-stable charge configuration. A high-level
diagram of a “candidate” four-dot metal QCA cell as well
as logic gate and wires appear in Figure 1. QCA devices
can be realized in metal [1], or with chemical molecules [2].
A wealth of experiments have been conducted with metal-
dot QCA with individual devices, logic gates, wires, latches,
and clocked devices all having been realized. CAD can help
research to move from small circuits to small systems of
quantum-dot cellular automata (QCA) devices. At this point,
QCA routing is restricted to a single plane with very limited
number of wire crossing permitted due to the large size of
intersection molecules. Thus, wire crossing minimization is
crucial in improving the buildability of QCA layouts. Thus,
the focus of this paper is to develop the first QCA physical
design algorithms for wire crossing minimization.

II. PROBLEM FORMULATION

The purpose of zone partitioning is to decompose a circuit
such that a single potential modulates the inner-dot barriers in
all of the QCA cells that are grouped within a clocking zone.
This is a requires step for a QCA layout to function correctly
under the 4-phase clocking scheme [3]. Assuming that all
partitions (= zone) have similar area, placement of zones
becomes a geometric embedding of the partitioned network
onto a m×n grid. In this case, a bipartite graph exists for every
pair of neighboring clocking levels. A directed graph G(V,E)
is K-layered Bipartite Graph (KLBG) iff (i) V is divided
into k disjoint partitions, (ii) each partition p is assigned a
level, denoted lev(p), and (iii) for every edge e = (x, y),
lev(y) = lev(x) + 1. Therefore, the zone placement problem
is to embed a zone-level k-layered bipartite graph onto an
m×n grid so that all blocks in the same layer are placed in the
same row. During QCA placement and duplication, we seek

(a) (b) (c)

e-

quantum

tunneling

Fig. 1. (a) QCA device, (b) majority gate that can implement AND2 or
OR2, (c) horizontal and vertical wires as well as wire crossing.

a KLBG placement of individual logic gates in each zone so
that area, wire crossing, and wirelength are minimized. Some
logic gates in the original circuit are duplicated in the KLBG
placement for further wire crossing minimization. The goal
of QCA channel routing is to finish connection among the
terminals in every two adjacent layers of the zone-level and
cell-level KLBG so that the total wire crossing and channel
width are minimized.

During zone partitioning, the length of all reconvergent
paths should be of the same length. Two paths p and q in
are reconvergent if they diverge from and reconverge to the
same node. In addition, cycles may exist among partitions as
long as their lengths are in multiples of four due to QCA
clocking. However, it is hard to enforce this constraint while
handling other objectives and constraints. Therefore, we decide
to prevent any cycles from forming at the partition level.
In addition, it is difficult to maintain the reconvergent path
constraint during partitioning process. Therefore, we allow the
reconvergent path constraint to be violated and perform a post-
process to add wire blocks to fix this problem.

III. QCA PHYSICAL DESIGN ALGORITHM

A. Zone Partitioning

An illustration of zone partitioning and wire block insertion
is shown in Figure 2. First, the cells are topologically sorted
and evenly divided into a number of partitions (p1, p2, · · · pk).
The partitions are then level numbered using a breadth-first
search. Next, the acyclic bipartitioning algorithm is performed
on adjacent partitions pi and pi+1. In this case, all cut
directed edges should be uni-directional. The cell gain has
two components: cutsize gain and wire block gain. The former
indicates the reduction in the number of inter-partition wires,
whereas the latter indicates the reduction in the total number
of wire blocks required. We then find the best partition based
on a combined cost function for both cutsize and wire block

Proceedings of 2005 5th IEEE Conference on Nanotechnology
Nagoya, Japan, July 2005

0-7803-9199-3/05/$20.00 ©2005 IEEE

a

b

c

d

e

f

x

y z

0

1

2

0

3

3

(a) (b) (c)

Fig. 2. Illustration of zone partitioning and wire block insertion. (a) directed
graph model of input circuit, (b) zone partitioning under acyclicity and
reconvergent path constraint, (c) wire block insertion, where the numbers
denote the longest path length. The dotted nodes indicate wire blocks.

gain. Multiple passes are performed on two partitions pi and
pi+1 until there is no more improvement on the cost. Then,
this acyclic bipartitioning is performed on partitions pi+1 and
pi+2, etc.

During the post-processing, we fix any remaining clocking
problems by inserting and sharing wire blocks, while satisfying
wire capacity constraints. First, a super-source node is inserted
in the graph whose fan-out neighbors are the original sources
in the graph. This is done to ensure that all sources are in
the same clocking zone. Then the single-source longest path
is computed for the graph with the super-source node as the
source–and every partition is assigned a clocking level based
on its position in the longest path from the source. In the next
stage, any edge connecting partitions that are separated by
more than one clock phase is marked, and the edge is added
to an array of bins at every index where a clocking level is
missing in the edge.

B. Zone Placement

An illustration of zone placement and wire crossing min-
imization is shown in Figure 3. The logic and wire blocks
obtained from zone partitioning are placed into a KLBG first.
Then these blocks are reordered within each clocking level to
minimize inter-partition wirelength and wire crossings. Two
classes of solutions were applied to minimize the above ob-
jectives: an analytical solution that uses a weighted barycenter
method [4], and Simulated Annealing. Wire crossing mini-
mization for a bipartite graph is proven to be NP-complete
[4]. The barycenter heuristic fixes the placement of the top-
layer while rearranging the bottom layer. The ordering of
the bottom layer nodes based on their center of mass gives
highly optimized solution. In Simulated Annealing, a move
is done by randomly choosing a level in the graph and then
swapping two randomly chosen partitions [p1, p2] in that level
in order to minimize the total wirelength and wire crossing.
In our approach, we initially compute the wirelength and
wire crossing and incrementally update these values after each
move so that the update can be done in O(m) time where m
is the number of neighbors for pi. This speedup allows us
to explore a greater number of candidate solutions, and as a
result, obtain better quality solutions.

a

b

c

d

e f

0

2

3

1 x

z

y

a

b

c

d

e f

0

2

3

1 x

z

y

(b) (c)(a)

a

b

c

d

e

f

x

y z

0

1

2

0

3

3

Fig. 3. Illustration of zone placement and wire crossing minimization. (a)
zone partitioning with wire block insertion, (b) zone placement, where a zone-
level k-layered bipartite graph is embedded onto a 2D space, (c) wire crossing
minimization via block re-ordering.

1

8

3 4 52

9 10 11 12

6 7

13 14

1

8

3 4 52

9 10 11 12

6 7

13 14

3 5 6

5

8

3 1 62

9 10 11 12

4 7

13 14

3 5 6

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10

Fig. 4. An example of the FTD algorithm with the threshold value of 2. All
nodes whose fan-outs spread out more than the threshold are duplicated. Node
3 originally has fan-outs to column 2, 3, and 6. Since the difference between
6 and 2 is greater than the threshold, it is duplicated. After duplication, the
layer is reorganized with Barycenter to minimize crossing.

C. Cell Placement and Duplication

We note that there is a limit to the reduction of wire crossing
just by rearranging the logic nodes. Thus, we introduce dupli-
cation of these nodes within the process to aid the reduction,
which on the other hand also results in a larger circuit. We
observe that the longer a wire that connects two nodes, the
higher chance it will cause wire crossing. Thus our algorithm
focuses on identifying long wires and reducing its length.
If a particular node in question had only one output, the
crossing its output wire causes can be eliminated via moving
the node to the same column that its destination node is placed
in. However if a node had two or more fan-outs and the
destination nodes were split up far away from each other, then
no matter where this node is positioned the total length of all
its fan-out wires would remain constant. Thus we measure
the difference in the wirelength of any two fan-outs from a
single source node, and if this length exceeds the set threshold
value, the node would then be duplicated to reduce the overall
length. After the duplication process the subject layer would
be reorganized via Barycenter. Figure 4 illustrates this process
in detail.

With high duplication rates, the unbalance in row length

1 2 0 3 3

0 2 2 3 1

2 3

1

1

2 3

1 2 0 3 3

0 2 2 3 1

2

3

1

1

2 3

1

(d)

(a)

(c)

(b)

Fig. 5. (a-b) A channel and VCG with minimum channel width but
reducible wire crossing. (c) optimum solution for minimizing wire crossing.
(d) corresponding modified VCG with an increased longest path.

could become so severe that it becomes impractical to phys-
ically lay it out. Thus we post process the circuit with our
folding algorithm to produce a square-like shape. The basis
upon reducing the width of a layer comes from the fact that
bypass nodes are physically thinner than actual nodes as it
is just a QCA wire. In our experiment, we set the width
ratio between a bypass and a node to 5. Thus by moving a
node to another layer and inserting a bypass wire for signal
propagation, we can reduce the width of the upper layer by 4.
But since all the nodes of the lower layer require their inputs
simultaneously, we have to fold the problematic layer onto the
newly created layers in between the two original layers.

D. Channel Routing

To reduce wire crossing during channel routing, we add
crossing edges between nets in the vertical constraint graph
(VCG) to enforce the vertical relationship that results in the
minimum number of crossing between them. An original VCG
is shown in Figure 5(b), and a modified version is shown
in Figure 5(d). The resulting channel, shown in Figure 5(c),
results in the fewest wire crossings. Each crossing edge is
assigned a weight equal to the number of wire crossings saved
by orienting the nets according to that vertical orientation. If
the VCG is not acyclic after the addition of crossing edges,
then the cycles must be removed before track assignment can
take place. We remove crossing edges until the VCG is once
again acyclic. The weight of crossing edges represents wire
crossing reduction, so our goal is to minimize the total weight
of the crossing edges removed to make VCG acyclic. This
problem is formally defined as follows: Weighted Minimum
Feedback Edge Set Problem: Given an edge-weighted directed
graph G(V,E) with cycles, the goal is to find a set of edges
A ⊂ E with the minimum total weight such that G′(V, E−A)
is acyclic. Since the non-weighted version of the Minimum
Feedback Edge Set Problem is NP-complete [5], this weighted
version also becomes NP-complete.

We note that a simple heuristic exists to solve the weighted
minimum feedback edge set problem: perform DFS once and
remove all backward crossing edges found. This will guarantee
that the remaining VCG is acyclic. A major shortcoming of

this approach, named backEdge, is that it ignores the edge
weights and may produce a feedback edge set with a high total
weight. Our new heuristic named cycleBreaker first traverses
the VCG in depth-first order and collects the cycles detected.
When this traversal is complete, it will have added some cycles
from each strongly connected subgraph in the VCG to the
collection of cycles that must be broken. Because the VCG
was acyclic until the crossing edges were added, each cycle
must depend on the presence of a crossing edge. Once these
cycles are found, the crossing edges of each are keyed in. We
use the following function to determine the edge key value:

key(e) =
|c(e)| · ∑e′∈c(e) weight(e′)

weight(e)
(1)

where c(e) denotes the cycles that contain e. The edge with
the highest key is removed from the VCG, and the cycles that
contain this edge are removed from the collection of detected
cycles. The edges are rekeyed and further cycles are removed
until no more detected cycles remain unbroken. In this manner,
small-weighted edges that occur in many cycles with other
higher-weighted edges are more likely to be targeted for
removal to break cycles. As discussed previously, cycleBreaker
runs multiple iterations of “DFS plus cycle removal” until all
cycles are removed from the VCG.

IV. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++/STL, compiled
with gcc v2.96 run on Pentium III 746 MHz machine. 14
combinational circuits were selected from ISCAS benchmark.
Table I shows the benchmark characteristics. We report the
total number of nodes and edges in the original circuit. We
also report the number of levels, columns, and bypass nodes
in each corresponding KLBG. Table I shows the crossing
reduction by our duplication strategies. dup represents the
ratio between the number of nodes between the initial and
final circuits, where 1.00 indicates nothing was duplicated.
%red shows the percentage of crossings reduced in respect to
the that of the Barycenter, since it is the lowest number of
crossings without duplication. Because all processed circuits
were put through the post process of folding described in the
previous section, the area of a circuit can be represented with
only the width; all circuits have a square-like shape so the
approximate area would be the width squared. We developed
the PATH algorithm, where each path from an output node
to all its relevant input nodes is separated and attributed an
individual column in the KLBG. Therefore, wire crossing is
zero at the cost of huge increase in area. We observe that our
duplication algorithm FTD in most cases perform between the
upper and lower bounds of the duplication strategies. In other
words, the crossings compared to Barycenter is reduced via
node duplication and the final area is less than that of PATH.

Table II first shows the theoretical wire crossing lower and
upper bound (x-low and x-upp) for each KLBG. We also show
the lower bound of channel width (= the longest paths from
source to sink in VCG) before crossing edge insertion (t-low).
These circuits were routed by four methods, and the results

TABLE I

QCA NODE PLACEMENT AND DUPLICATION RESULTS. WE APPLY FOLDING FOR ALL ALGORITHMS AS A POST PROCESS. THE CROSSING REDUCTION

PERCENTAGE AND DUPLICATION RATIO ARE NORMALIZED TO BARYCENTER RESULTS.

init digraph KLBG Barycenter PATH FTD
ckt #node #edge #lyr #col #byps xing wth dup xing wth dup %red xing wth dup %red
cmb 34 57 7 27 50 22 41 1.00 0 82 2.35 100 0 65 1.73 100

decod 39 84 4 50 48 529 54 1.00 0 100 3.28 100 0 96 3.12 100
pm1 60 98 6 40 56 613 60 1.00 0 89 1.81 100 1 87 1.78 100
i1 74 88 7 38 90 132 62 1.00 0 114 2.31 100 18 89 1.71 86
sct 74 177 5 76 90 3108 84 1.00 0 154 2.56 100 96 124 2.14 97

my adder 99 130 19 62 600 409 70 1.00 0 345 5.12 100 0 345 5.12 100
i2 238 269 6 201 52 132 62 1.00 0 311 1.43 100 1061 227 1.02 -704
x4 301 716 5 303 518 37967 311 1.00 0 1059 4.57 100 4022 593 2.75 89
k2 317 2893 4 215 35 810343 235 1.00 0 10343 R.O. 100 299112 1252 4.73 63
i5 398 622 8 254 824 4781 262 1.00 0 903 3.52 100 200 695 2.83 96

apex6 472 959 10 423 1692 36406 427 1.00 0 1403 4.84 100 829 800 2.81 98
rot 485 844 12 336 1769 31300 340 1.00 0 4540 11.78 100 3689 1283 3.70 88

frg2 808 2035 10 813 3422 205073 817 1.00 0 4446 8.02 100 11416 2236 4.38 94
pair 1140 2157 20 666 5720 80447 674 1.00 0 7160 R.O. 100 7537 2903 4.73 91

TIME - 18 21 - 126

TABLE II

QCA CHANNEL ROUTING RESULTS. WE REPORT THE PERCENTAGE OF WIRE CROSSING THAT INVOLVE DOGLEG (%DOG).

theoretical bounds LEF YK BE CB
ckt x-low x-upp t-low xing %dog track xing %dog track xing %dog track xing %dog track
cmb 0 0 42 0 NA 42 0 NA 42 0 NA 42 0 NA 42

decod 0 55 64 26 0.00 65 26 0.00 65 26 0.00 65 0 NA 77
pm1 1 113 25 56 0.00 28 52 0.00 28 50 0.00 29 1 0.00 43

i1 15 250 105 126 1.59 113 112 1.79 110 97 2.06 119 17 11.76 136
sct 71 4806 48 2447 0.08 82 2180 0.09 79 2025 0.10 99 73 2.74 140

my adder 0 0 72 0 NA 72 0 NA 72 0 NA 72 0 NA 72
i2 1577 5410 118 3430 0.64 131 3388 0.62 142 3319 0.51 158 2270 0.97 281
x4 2126 113984 215 58672 0.02 372 54528 0.04 402 50656 0.02 523 2242 1.16 1253
k2 80832 967007 279 533694 0.02 858 493600 0.02 874 375464 0.02 1274 92059 0.33 1692
i5 182 55000 508 28443 0.01 596 27260 0.01 624 25602 0.01 669 190 2.11 1317

apex6 582 126406 563 64361 0.01 739 62877 0.01 807 58498 0.01 902 605 1.82 2755
rot 2985 296307 815 150372 0.01 1011 143856 0.01 1108 144636 0.01 1163 3289 1.19 4133

frg2 6783 1310127 799 666234 0.00 1358 630384 0.00 1614 620448 0.00 1878 7219 0.32 7128
pair 6050 1091586 1807 554124 0.01 2348 530954 0.01 2643 527186 0.01 2850 6599 0.61 12516

TIME - 685 727 808 736

are shown in Table II. The results of our algorithm are listed
as “CB” for our cycleBreaker algorithm in Table II. It was
compared to the LEF algorithm (LEF) [6], as well as the
algorithm presented by Yoshimura and Kuh (YK) [7]. It was
also compared to the backEdge algorithm (BE) (a topological
feedback edge set implementation). We note that LEF, YK, and
BE generated channel routing solutions well above the circuits
theoretical minimum crossing (x-low), but very close to the
theoretical minimum track count (t-low). Our channel routing
method CB comes much closer to the theoretical minimum
crossing count, but produces wider channels.

V. CONCLUSION

QCA promises numerous benefits over today’s CMOS
circuits. However, due to its technological constraints, the
circuit has to be laid on a single layer. This causes wire
crossing problems which are too costly to be solved via
current intersection molecules. In this article, we presented
new algorithms for wire crossing reduction during partitioning,
placement, and routing. The outputs of this research are used
to generate computationally interesting and optimized designs
for experiments by QCA physical scientists.

ACKNOWLEDGMENT

This research has been supported by the National Science
Foundation under contract CCF-0404011.

REFERENCES

[1] I. Amlani, A. Orlov, G. Snider, and C. Lent, “Demonstation of a func.
quantum-dot cellular automata cell,” J. Vac. Sci. Technology, pp. 3795–
3799, 1998.

[2] M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, C. Lent, G. Bern-
stein, G. Snider, and F. Peiris, “Quantum-dot cellular automata at a
molecular scale,” Annals of the New York Academy of Science, pp. 225–
239, 2002.

[3] R. Kummamuru, J. Timler, G. Toth, C. Lent, R. Ramasubramaniam,
A. Orlov, and G. Bernstein, “Power gain in a quantum-dot cellular
automata latch,” Applied Physics Letters, pp. 1332–1334, 2002.

[4] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding
of hierarchical system structures,” IEEE Trans. Syst. Man,. Cybern, pp.
109–125, 1981.

[5] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
To the Theory of NP-Completeness. Freeman, San Francisco, 1979, pp.
209–210.

[6] A. Hashimoto and S. Stevens, “Wire routing by optimizing channel
assignment within large apertures,” in Proc. ACM Design Automation
Conf., 1971, pp. 155–169.

[7] T. Yoshimura and E. Kuh, “Efficient algorithms for channel routing,”
IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, pp. 25–35, 1982.

