
1684 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004

Retiming-Based Timing Analysis with an Application to
Mincut-Based Global Placement

Jason Cong and Sung Kyu Lim

Abstract—In this paper, we formulate the physical planning with
retiming problem and propose an algorithm called GEO. Our perfor-
mance-driven global placement algorithm GEO is mincut-based, where
a multilevel partitioning is performed recursively to divide the netlist
and assign gates to the tiles in a top-down fashion. The contribution of
our work is on the development of retiming-aware timing analysis (RTA)
that is used to guide our mincut-based global placement. Compared
to the conventional static timing analysis, RTA provides timing slack
information after retiming so that the clock period after retiming can
be directly minimized during the placement. We show how to make an
effective use of RTA timing slack information in a multilevel partitioning
framework. Simultaneous consideration of partitioning and retiming
under the geometric delay model enables GEO to hide global interconnect
latency more effectively compared to the conventional approaches. In our
comparison to the state-of-the art methods that perform partitioning,
retiming, and simulated annealing-based floorplanning separately, GEO
obtains significant improvement on retimed delay, while maintaining
comparable wirelength and runtime results.

Index Terms—Global placement, retiming-based timing analysis.

I. INTRODUCTION

As we move from 0.18-�m technology with a clock frequency of
1–2GHz to the 0.07-�m technologywith a clock frequency of 4–5GHz
in a few years, interconnect delay will continue to far exceed device
delay and become a dominating factor in determining the system per-
formance. The majority of the clock period is no longer spent on com-
puting or generating the data but on transmitting and communicating
the data between various parts of the chip. Recent advances on intercon-
nect optimization techniques, such as interconnect topology optimiza-
tion, optimal buffer insertion and sizing, optimal wire-sizing, etc., can
help to reduce interconnect delays significantly [1]. However, they are
not able to reverse the trend of the growing gap between device and in-
terconnect performance. Therefore, the interconnect-centric paradigm
is needed at every level of the design process, from system-architecture
design to the careful process of geometry optimization. to eliminate the
interconnect performance bottleneck.

Global placement has drawn significant attention from the computer-
aided design community in recent years as an indispensable way
to handle the complexity of the modern placement problems. The
placement problem is divided into global and detailed placement
in much the same way as in the division of global and detailed
routing. Global placement determines the region for a group of
cells to be located whereas detailed placement removes overlap
and performs legalization in each region while preserving the global
placement solution as much as possible. Typically the two-dimensional
(2-D) placement region is divided into m� n tiles, and cells are
placed at the center of the tiles during the global placement. There

Manuscript received July 12, 2003; revised January 5, 2004. This work was
supported in part by the MARCO/DARPA Gigascale Silicon Research Center,
in part by a grant from the Intel Corporation, in part by the National Science
Foundation/Georgia Tech. Packaging Research Center, and in part by Georgia
Yamacraw. This paper was recommended by Associate Editor S. Hassoun.

J. Cong is with the Department of Computer Science, University of Cali-
fornia, Los Angeles, CA 90095 USA.

S. K. Lim is with the School of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA 30332-0250 USA (e-mail:
limsk@ece.gatech.edu).

Digital Object Identifier 10.1109/TCAD.2004.837718

are three major approaches in global placement—mincut [2], [3],
analytical [4], [5], and simulated annealing (SA)-based [6] approaches.
In the mincut-based approach, recursive partitioning is performed
to divide the netlist and assign gates to the tiles in a top-down
fashion. Due to the fast runtime and flexibility in handling various
constraints, the mincut-based approach has been used in many modern
state-of-the-art placement algorithms [7]–[9]. Global placement has
a tremendous impact on the performance since it determines the
delay of global connections. Thus, an effective performance-driven
partitioning algorithm is crucial in developing mincut-based global
placement for performance optimization.

Circuit partitioning divides a given circuit into a collection of smaller
subcircuits while satisfying the given area and/or pin constraints. The
conventional objective of partitioning is to minimize the number of
connections among the subcircuits, which has a direct impact on the
final chip areaminimization. Under the new interconnect-centric design
paradigm, however, partitioning is seen as the crucial step that defines
the local and global interconnects [10]—intrapartition connections
become local interconnects, whereas interpartition connections become
global interconnects. To meet the performance requirement of today’s
complex design, partitioners must consider the amount of interconnect
induced by partitioning (measured by its cutsize) as well as its
impact on performance (measured by its delay). Cutsize minimization
helps to lower the possibility of critical paths crossing partition
boundary multiple times, thus improving performance. However,
cutsize minimization alone is not enough since we need more
rigorous approaches that address the impact of partitioning on delay
minimization.

Performance-driven partitioning methods can be grouped into ones
that are designed for combinational circuits [11]–[13], and for sequen-
tial circuits with retiming [14]–[16]. Retiming [17] is a sequential
logic-optimization technique that exploits the flexibility provided
by repositioning flip-flops (FFs) to minimize either the delay or the
number of FFs in the circuit. Recently, retiming has become more
attractive in handling global interconnects; it allows multiple clock
cycles to propagate signals across the chip. Traditionally, retiming is
performed during logic synthesis to minimize the longest path delay.
However, this step ignores routing delay and, thus, considers only the
gate delay. Retiming can be performed after partitioning as a postpro-
cess based on a rough-routing delay estimation. Recent advances in
combining partitioning with retiming [14]–[16] enable the partitioner
to explore wider solution space that considers equivalent FF move-
ment. However, all of these existing works are based on a very simple
“variable gate delay model” [12]—variable delay values for gates, but
with a single constant value for interblock connection. This limitation
is simply due to the fact that the location and dimension of blocks are
not available during the partitioning. Therefore, several recent studies
on layout-driven retiming [18], [19] attempted to tight-couple retiming
and placement together.

Given a circuit consisting of both fixed or flexible blocks and a
netlist interconnecting these blocks, floorplanning constructs a layout
by determining the position and shape of each block such that all nets
can be routed and the total layout area is minimized. Traditionally,
partitioning is performed on top of a retimed circuit to generate blocks,
followed by the subsequent floorplanning to determine the location
of blocks. However, the separation among partitioning, retiming,
and floorplanning poses three major shortcomings for performance
optimization: 1) retiming and partitioning suffer from nonrealistic
delay estimation, which in turn may mislead performance optimization
as illustrated in Fig. 1(a)–(b); 2) a restriction exists in retiming global
interconnects—we cannot place FFs along wires but only at the
beginning of the wires as illustrated in Fig. 1(c)–(e); and 3) the

0278-0070/04$20.00 © 2004 IEEE



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004 1685

Fig. 1. Importance of geometric delay model. (a)–(b) Let path p : a ! d and p : e ! f . Assume delay of the gates is d, and interblock edge delay is D. A
sequential circuit after retiming and after floorplanning are respectively shown in (a) and (b). Let d(p) denote the delay along a path p. Then, d(p ) = d(p ) =
2d+D under the conventional variable gate delay model. However, d(p )� d(p ) based on the geometric embedding. (c)–(e) nongeometric embedding based
retiming of p gives solution (d) p , while finer-grained FF placement based on geometric embedding gives solution (e). Note that the potential improvement can
be as big as the delay of the global interconnect itself.

subsequent floorplanning may be constrained by the predefined local
and global interconnects from the prior partitioning.

Our performance-driven global placement algorithm GEO is mincut-
based, where a multilevel partitioning is performed recursively to
divide the netlist and assign gates to the tiles in a top-down fashion.
The contribution of our work is on the development of retiming-aware
timing analysis (RTA) that is used to guide our mincut-based global
placement. Compared to the conventional static timing analysis (STA),
RTA provides timing-slack information after retiming so that the
clock period after retiming can be directly minimized during the
placement. We show how to make an effective use of RTA timing-slack
information in a multilevel partitioning framework. We also show
that the mincut placement environment enables GEO to exploit the
more realistic geometric delay model. Simultaneous consideration of
partitioning and retiming under the geometric delay model enables
GEO to hide global interconnect latency more effectively compared
to the conventional approaches [14]–[16]. In our comparison to
the state-of-the art methods that perform partitioning, retiming, and
SA-based floorplanning separately, GEO obtains significant improve-
ment on retimed delay while maintaining comparable wirelength
and runtime results.

The remainder of the paper is organized as follows. Section II pro-
vides the problem formulation. Section III presents RTA algorithm.
Section IV presents GEO algorithm. Section V provides experimental
results. Section VI concludes the paper with the discussion of our on-
going research.

II. PROBLEM FORMULATION

Given a sequential gate-level netlist NL(C;N), let C denote cells
consisting of gates and FFs, and N denote nets that connect the cells.
The purpose of the physical planning with retiming (PPR) problem is to
assign cells in NL to a givenm�n slots while satisfying the prescribed
area constraints. Given a PPR solution P , our primary objective is to
minimize retiming delay induced by P (to be defined soon).1 As sec-

1Note that some literature uses a term “clock period after retiming” to refer
to the delay of the longest combinational path after retiming.

ondary objectives, we minimize wirelength induced by P . The formal
definition of the problem is as follows.
Definition 1 (PPR Problem): The PPR problem with the given

netlist NL(C;N), a set ofm�n(= K) slots S = fS1; S2; . . . ; SKg,
with Si � C , and area constraints A = (Li; Ui) for 1 � i � K has a
solution P : C ! S, where each cell in C is assigned to a unique slot.
P is optimal if it satisfies the following conditions: 1) Li � jSij � Ui
for 1 � i � K; 2) S1 [ S2 [ � � � [ SK = C; 3) Si \ Sj = ; for all
i 6= j; and 4) retiming delay is minimized.

A. Geometric Delay Model

The delay model in the context of mincut-based global placement
specifies how the cell and edge delay values are to be determined. There
are two proposed delaymodels in the literature that many of the existing
partitioning works are based on, such as the unit delay model [11] and
the variable gate delay model [12] (also called “general delay model”
in the literature). In the unit delay model, cell delay is ignored, and
the edges that connect vertices in different blocks (= interblock edges)
are given a constant delay ofD, while intrablock edges incur no delay.
In the variable gate delay model, cells can be assigned with arbitrary
delay values, and interblock edges are given a constant delay of D,
while intrablock edges incur no delay.2

Note that both delay models are nongeometric in a sense that
we do not consider the actual length of the edges into the delay
calculation simply because the cell location is not known during
partitioning. However, if we use partitioning to do placement (=
mincut placement), we can exploit cell-location information available
during top-down placement for more accurate edge delay calculation.
In the beginning, all cells are located at the center of the placement
region. After the first vertical cut, there are two different cell locations:
left and right. After the two subsequent horizontal cuts, there are
four different cell locations: upper left, upper right, lower left, and
lower right. Therefore, the cell location is getting more refined as we
perform more bipartitioning. Therefore, the edge-delay calculation

2Local interconnect delay can be estimated and its average can be lumped
into the cell delay d(v) for simplicity.



1686 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004

can exploit the cell location readily available during this mincut-based
placement.

In our geometric delay model, we first model NL with a di-
rected, edge-weighted graph G = (V;E)3, where the vertex set
V = fv1; v2; . . . ; vng represents cells, and the directed edge set
E = fe1; e2; . . . ; emg represents signal directions in NL. A directed
edge e(u; v) denotes the connection from vertex u to vertex v. Each
vertex v has a delay of d(v), and each edge e(u; v) has a delay of d(e)
that is linearly proportional to the Manhattan distance between u and
v, i.e.,

d(e) / jxi � xj j+ jyi � yj j

where u 2 Si and v 2 Sj . The delay of a path p(u; v) from u to v,
denoted d(p), is defined to be the sum of d(e) and d(v) along p.

Note that we do not use the nonlinear Elmore delay model since
routing topology (= RC tree) is not available during the partitioning
and global placement stage. A recent study [20] shows that wire delay
becomes proportional to its linear length rather than squared length
if interconnect optimization schemes, such as wire sizing, buffer
sizing/insertion, etc., are followed. We attempted to use the squared
manhattan distance for d(e) instead of linear distance and observed
little difference in terms of final delay results. We conjecture that
the minimization of both linear and squared wirelengths have the
similar impact on our mincut-based global placement framework.

B. Static Delay Versus Retiming Delay

In this paper, we consider two kinds of delay values from a global
placement solution: static delay and retiming delay. The static delay
refers to the delay of the longest combinational path before retiming.
The retiming delay refers to the delay of the longest combinational path
after retiming. The formal definition of static delay is as follows.

Definition 2 (Static Delay): The static delay induced by a PPR solu-
tion is the largest delay among all combinational paths from G, where
G is the directed graph representation of the given netlist (discussed in
Section II-A).

We use the retiming graph [17] for the computation of retiming
delay. A retiming graph R = (V;E;W ) consists of a vertex set
V = fv1; v2; . . . ; vng that represents gates, a directed edge set
E = fe1; e2; . . . ; emg that represents signal directions in NL, and
edge weight set W that represents the the number of FFs between
the two end-vertices of each edge. A retiming is a labeling of the
vertices r : V ! Z , where Z is the set of integers. The weight of
an edge e = (u; v) after retiming is denoted by wr(e) and is given
by w(e(u;v)) + r(v) � r(u). The retiming label r(v) for a vertex
v 2 V represents the number of FFs moved from its output toward its
inputs. A circuit is retimed to a delay � by a retiming r if the following
conditions are satisfied; 1) wr(e) � 0 and 2) wr(p) � 1 for each path
p such that d(p) > �, where wr(p) =

e2p
wr(e). Since � after

retiming is usually smaller, retiming is used to further reduce the delay.
For a given PPR solution P and a target delay �, the edge length

of e = (u; v), denoted l(e), is defined to be �� � w(e) + d(v) +

d(e). The path length of p, denoted l(p), is
e2p

l(e). The sequential
arrival time (SAT) [14] of v, denoted l(v), is the maximum path length
from primary inputs (PIs) to v. If the SAT for all primary outputs (POs)
are less than or equal to �, the target delay � is called feasible. Let

3In this paper, we use three different models to represent the sequential cir-
cuits: 1) G, the directed graph model for STA; 2) R, the retiming graph model
(to be discussed in Section II-B) for RTA; and 3) H , the hypergraph model (to
be discussed in Section II-C) for computing wirelength.

Dg = maxfd(v) j v 2 V g. The formal definition of retiming delay is
as follows.4

Definition 3 (Retiming Delay): The retiming delay induced by a
PPR solution is defined to be the � + Dg , where � is the minimum
feasible target delay from R and R is the retiming graph representa-
tion of the given netlist.

C. Wirelength Objective

For the wirelength calculation, we model NL with a hypergraph
H = (V;EH), where the vertex set V = fv1; v2; . . . ; vng repre-
sents cells, and the hyperedge setEH = fh1; h2; . . . ; hm g represents
nets in NL. Each hyperedge h is a nonempty subset of V . The x-span
of a hyperedge h, denoted hx, is defined as hx = maxc2hfxi j c 2
Big�minc2hfxi j c 2 Big. The y-span of h, denoted hy , is similarly
defined using y-coordinates instead. The sum of x-span and y-span of
each hyperedge h is the half-perimeter of the bounding box (HPBB)
of cells in h. The wirelength induced by a global placement solution is
the sum of HPBB of all hyperedges.

III. RETIMING-BASED TIMING ANALYSIS

This section presents our RTA engine. We adopt the concept of SAT,
which was first introduced in [14] and later on used in [15] and [16]
for partitioning with retiming. We extend SAT and introduce sequen-
tial required time and sequential slack. The slack information is used to
derive �-network that identifies timing critical cells in the circuit after
retiming. In GEO, the derivation of �-network plays a key role in deter-
mining the cell move gain.

A. Static Timing Analysis

The concepts of arrival time, required time, and timing slack are fun-
damental in the STA of sequential circuits. We perform STA onG, the
directed graph representation of the netlist discussed in Section II-A.
The arrival time of a vertex v 2 V , denoted lc(v), is defined to be the
maximum combinational path delay from PIs to v. The computation of
arrival time can be done by examining fanin vertices

lc(v) = maxflc(u) + d(e) + d(v) j e(u; v) 2 Eg:

The d(e) and d(v) denote the edge and cell delay, respectively. We
can compute the lc of all vertices by visiting them in a topological
order and updating lc(v). We can assign the required time of a vertex
v 2 V , denoted qc(v), to specify the timing constraint for v, i.e., the
delay from PIs to v is “required” to be qc(v). After assigning qc(v), we
can compute the required time of all upstream vertices, i.e., all vertices
reachable from PIs before arriving at v, by examining fanout vertices

qc(v) = minfqc(u)� d(e)� d(v) j e(v; u) 2 Eg:

We can compute the required time of all vertices by visiting them in
a reverse topological order and updating qc(v). The timing slack of a
vertex v 2 V , denoted sc(v), is defined to be the difference between
the required time and arrival time of v

sc(v) = qc(v)� lc(v):

The slack is used to determine the timing criticality of vertices in V : a
smaller s(v) indicates higher timing criticality for v. We can derive the

4For the conventional nongeometric embedding-based partitioning with
d(e) = D for all interblock edges, the authors of [14] showed that P can
be retimed to a delay less than � + D, if � is feasible. A straightforward
extension of this delay bound � + D for our PPR problem is � + D , where
D = maxfd(e) j v 2 Eg. However, our FF placement phase in Section IV-D
reduces this bound to � +D , where D � D .



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004 1687

�-network from slack values. �-network is defined to be a subgraph of
G consisting of vertices whose slack is smaller than or equal to �.

Definition 4 (�-Network): The �-network G0 = (V 0; E0) is
a subgraph of G, where V 0 = fv j v 2 V; s(v) � �g, and
E0 = fe j e(u; v) 2 E; u 2 V 0; v 2 V 0g.

Thus, �-network consists of timing critical vertices that deserve
attention for delay optimization.

B. RTA Algorithm

The concepts of SAT, sequential required time, and sequential timing
slack are fundamental in RTA of sequential circuits. We perform RTA
onR, the retiming graph representation of the netlist discussed in Sec-
tion II-B. In order to handle sequential circuits directly—as opposed to
the conventional approach where FFs are removed to make the circuit
combinational—we define the SAT of v 2 V as follows:

l(v) = maxfl(u)� � � w(e) + d(e) + d(v) j e(u; v) 2 Eg

wherew(e) inR denotes the number of FFs along the edge e. Retiming
involves a feasibility test of given target delay, and � denotes such a
target delay. In a similar way, we define the sequential required time
(SRT) of v 2 V as follows:

q(v) = minfq(u) + � � w(e)� d(e)� d(v) j e(v; u) 2 Eg:

The sequential slack of v, denoted s(v), is given by q(v) � l(v).
Note that R may contain loops with positive weights, depending upon
target delay �. Therefore, RTA essentially performs the single-source
longest-path algorithm as in the Bellmen-Ford algorithm [21]. In order
to compute the minimum feasible target delay, we perform binary
search using RTA as a feasibility test.

SAT and retiming are closely related. In fact, the computation of SAT
and retiming can be performed at the same time. Consider a path p that
starts from a PI u and ends at vertex v. If we want to retime p to satisfy
the time constraint �, there must be at least dl(p)=�e � 1 FFs on p.
Since there exists w(p) FFs on p, we can set the retiming value r(v)
as dl(p)=�e � 1 � w(p). Thus, r(v) = dl(p)=�e � 1 � w(p). After
rewriting, we get r(v) = dl(v)=�e � 1.

Our RTA uses a feasible target delay � to compute SAT, SRT, and
retiming, all at the same time. RTA algorithm determines if the target
delay � is feasible. If so, RTA returns SAT, SRT, and retiming values
of all vertices in R. In RTA, SAT for all PIs are set to zero while all
others are set to �1. SRT for all POs are set to � while all others
are set to 1. Then, we can iteratively update SAT and SRT until they
converge to their maximum and minimum values, respectively. From
these SAT and SRT values, we can compute timing slack and its corre-
sponding �-network. We can also obtain retiming values for all vertices
as a byproduct of this step as discussed earlier.

Fig. 2 shows the description of our RTA algorithm. The initialization
for SAT l(v), sequential required time q(v), retiming r(v), and prede-
cessor �(v) for each vertex is done (lines 1–6). The Boolean flag done
is used to check if update of any vertex is done (line 8)—if not, we con-
clude that the target delay � is feasible (line 23). We visit each vertex
once in each iteration (line 9), and temporal l(v) and q(v) are com-
puted from examining v’s fanin (line 10) and fanout (line 11) vertices.
We also remember the fanin vertex that causes the update of l(v) in
order to keep track of the longest path to v (line 12). If we find that the
SAT of any PO is larger than the target delay �, we conclude that � is
not feasible (lines 13–14). Otherwise, if newly computed l(v) is larger
than the current value, we update l(v); r(v), and�(v) (lines 15–18) and
conclude that we need additional iteration (line 19). Also, we update
q(v) and conclude that we need additional iteration if newly computed

Fig. 2. Description of RTA algorithm that computes the SAT l(v), sequential
required time q(v), retiming r(v), and predecessor �(v) for all v 2 V . RTA
also determines the feasibility of the target delay �.

q(v) is smaller than the current value (lines 20–22). If RTA does not
converge afterO(V ) iterations, we conclude � is not feasible (line 25).

The complexity of the Bellman–Ford-type longest-path algorithm is
O(n2) in the worst case since it requires O(n) number of relaxation
until all values converge to their maximum. If the circuit contains no
positive loops, RTA needs only one iteration of relaxation if the ver-
tices are relaxed in topological order starting with PIs. For a circuit
with positive loops, however, a topological ordering is not defined. We
observe from the related experiments that the number of iterations is
usually small compared to jV j. Thus, the complexity of RTA in prac-
tice is O(n). Note that the retiming graph R has multiple sources—all
PIs. In order to perform the single-source longest-path algorithm onR,
we add two special vertices vs and vt to V and call them the source
and sink vertices. We add directed edges from vs to all PIs, and from
all POs to vt. The delay of vs; vt, and the edges incident to them are
set to zero.

IV. GEO ALGORITHM

A. Overview of GEO Algorithm

GEO is a mincut-based global placement algorithm, where a mul-
tilevel partitioning is performed recursively to divide the netlist and
assign gates to the m � n slots in a top-down fashion. GEO consists
of two phases, namely, the construction and FF placement phases.
During the construction phase, mincut-based global placement is
performed. Our RTA identifies the timing critical nodes in the current
subnetlist to be partitioned. Then, GEO computes the weights of the
nets in the �-network in such a way that the nets that contain cells
with smaller sequential timing slack get higher weights (formula is
given in Section IV.C). Lastly, GEO performs multilevel bipartitioning
to minimize the weighted cutsize. The horizontal and vertical cuts are
alternating in breadth-first manner in GEO so that the first horizontal
cut divides the chip area into top and bottom block, and the second
vertical cuts further divide the chip area into top-left, top-right,
bottom-left, and bottom-right block, etc. During the FF-placement



1688 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004

Fig. 3. Illustration of GEO algorithm. We perform a bottom-up multilevel
clustering on the input sequential circuit (modeled with a directed graph).
Our RTA (Retiming based Timing Analysis) identifies timing critical paths
considering retiming (shown in dotted line) and guides the top-down multilevel
bipartitioning. The entire placement region is recursively bipartitioned until
we obtain the desired number of subregions. Clustering is updated after each
bipartitioning.

phase, both coarse-grained and finer-grained repositioning of FFs are
performed. The coarse-grained FF repositioning determines which
edge gets FFs, and this is done via standard retiming. The finer-grained
FF positioning determines at what point of the edge FF is to be located,
and this is done with FF placement. An illustration is shown in Fig. 3.

We use iterative improvement-based FM algorithm [22] for parti-
tioning and connectivity-based ESC algorithm [23] for multilevel clus-
tering. We first compute a random bipartitioning among the clusters
at the top level and set edge delay in R accordingly. After performing
RTA onR and computing weights of nets in the �-network, we perform
cell move to reduce the current weighted cutsize. After a pass of cell
move is finished, we perform RTA again based on the new solution and
update net weights accordingly. This cell move pass continues until we
find no gain during the pass. Then this top-level partitioning informa-
tion is projected onto the next cluster hierarchy level, and more cell
move pass is performed on the next level for further refinement. This
top-down multilevel partitioning continues until we obtain the parti-
tioning solution at the bottom level. Since RTA provides timing-slack
information after retiming, retiming delay is directly minimized during
the placement. In addition, the mincut placement environment enables
GEO to exploit geometric delay model discussed Section II-A.

B. Construction Phase

A pseudocode of the GEO algorithm is shown in Fig. 4. The inputs
to GEO are the netlist NL(C;N), a set S withm� n(=K) slots, and
area boundA. The outputs of GEO are slot assignment P : C ! S and
minimum feasible retiming delay �. GEO consists of two subroutines:
GEO-2way recursively bipartitions the netlist, whereas GEO-Kway
refines the global placement result. GEO-2way is performed on the
subnetlist, whereas GEO-Kway is performed on the entire netlist. A
binary tree T is used to keep track of the recursive bipartitioning re-
sults—we grow T by adding two children nodes to the current parent
node based on the bipartitioning result. Initially, the partitioning tree T
has only root nodeR, and all cells in NL are inserted intoR. The first-in
first-out (FIFO) queue Q is used to support the recursive breadth-first
cut sequence.

Fig. 4. Overview of the GEO algorithm.

GEO-2way first generates the subnetlist from the given partition
tree node and performs multilevel clustering on it. Then, we obtain a
random initial partitioning B among the clusters at the top level of the
hierarchy. The subsequent top-down multilevel refinement is used to
improve B in terms of retiming delay. We perform RTA to identify
timing critical cells and compute the delay weight for the nets in the �
network. The subsequent iterative improvement through cluster move
tries to minimize the weighted cutsize. Finally, we project the current
solution to the next level coarser netlist for multilevel optimization. At
the end of GEO-2way, two new children nodes are inserted into T
based on B.
GEO-Kway refinement is performed when we obtain 2j partitions

(j > 1) from GEO-2way (4, 8, 16 partitions, etc.). We first perform
a restricted multilevel clustering, where grouping among cells in dif-
ferent partitions is prohibited. This allows the partitioner to preserve
the initial partitioning results. Then, we performmultilevel partitioning
in the same way as in GEO-2way for additional delay improvement.
GEO-Kway is applied onto the global netlist for more global level op-
timization. We use the pairwise movement approach proposed in [24]
for our K-way partitioning refinement.

C. Delay-Weight Computation

In GEO, we use sequential slack to compute how much timing slack
remains for a gate before it violates the timing requirement after re-
timing. These values are then used to compute the delay weights of the
nets in the � network for retiming delay minimization. We note that the
multilevel partitioning approach [25] is very effective in minimizing
the weighted cutsize. Therefore, GEO performs multilevel partitioning
to minimize the RTA-based weighted cutsize. However, RTA is done
at the original netlist while a recursive multilevel approach performs
partitioning on the subnetlist as well as its coarsened representations.
Thus, it is crucial that we have an effective way to translate the RTA



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004 1689

Fig. 5. Overview of the DELAY-WEIGHT algorithm that computes the weight
of the nets in the � network.

results from the original netlist to the current coarsened subnetlist we
are partitioning.

Fig. 5 shows DELAY-WEIGHT, our delay-weight calculator. Before
we perform RTA, we initialize the edge delay inR (= retiming graph)
based on the current global placement result—we set the delay of
edges based on their Manhattan distance as discussed in Section II-A.
Then, our Bellman–Ford variant RTA is performed from a given
feasible delay to compute sequential slack. For each cluster C from
the given coarsened subnetlist NL, we compute C(R), the set of
all the nodes in R that are grouped into C . We use the minimum
slack among all cells in C(R) as the slack for C . The reason we use
the minimum slack value is because the critical path information is
preserved regardless of multilevel clustering results (we have also
performed experiments using average slack value instead of minimum.
However, the minimum slack method generated better delay results).
After the cluster slack computation is finished, we sort the clusters in
a nondecreasing order of their slack values. We store the top �% into
a set X . For each net that contains only the clusters in X , we use the
following equation to assign the delay weight:

delay weight(N) = � 1�
minfslack(v) j v 2 Ng

maxfslack(w) jw 2 NL0g




where � determines the range of delay weight(N), and 
 helps to
evenly distribute the weights between [0; 1]. This equation gives higher
weights to the nets that contain smaller minimum cluster slack, thus
giving higher priority to the nets containing more timing critical clus-
ters. Instead of requiring all clusters in a net to be timing critical, we
tried another scheme where we give delay weights to the nets with
two or more timing critical clusters. Our related experiment indicates
that this approach produced worse results. Our extensive experiments
shown in Section V-B indicate that � = 10; � = 10, and 
 = 3 are an
excellent empirical choice.

D. FF-Placement Phase

We note that retiming performs coarse-grained FF placement; it
determines which edge gets which FF, but not the exact location on
the edge. The optimal position of the ith FF computed by retiming
on a path p is every point where the propagation delay equals to
i � � for 1 � i � wr(p). Thus, it is possible that the location is
occupied by a cell. Under the nongeometric partitioning, we do
not have a choice but to place f either at Su or Sv for f 2 FF
repositioned to e(u; v) via retiming, where Su denotes the slot u
is assigned. However, finer-grained FF placement is possible under
geometric embedding based partitioning since each cell is associated
with certain geometric location. Note that the potential improvement
can be as big as the delay of the global interconnect itself depending
on the retiming result.

Our strategy to find out the exact location is as follows. We recom-
pute the SAT for each vertex after retiming. Then, l(v) for each vertex
v represents the maximum delay from PIs to v. Thus, as depicted in
Fig. 6, the optimal location of f can be determined based on l(u) and

Fig. 6. Placement of f 2 FF along edge e = (u; v). (a) f is placed at the
position where the SAT equals to �, (b) optimal location of f , where � = 10.
f is placed at the point where the distance between u and f is 2 = �� l(u) =
10 � 8.

the target delay�: wemove f fromu toward v by a distance of��l(u).
In other words, we find a position x where l(x) = � on e = (u; v).
Assuming that x; ux, and vx, respectively, denote the x coordinate of
f; u, and v (similar for y; uy , and vy), we obtain the following:

jx � uxj : jvx � xj = �� l(u) : d(e)� �+ l(u)

jy � uyj : jvy � yj = �� l(u) : d(e)� �+ l(u):

After rewriting these equations, we get

x =
vx � [�� l(u)] + ux � [d(e)� �+ l(u)]

d(e)

y =
vy � [�� l(u)] + uy � [d(e)� �+ l(u)]

d(e)
:

Moreover, placement of FFs along the longest paths from PIs to POs
will suffice in order to retime the circuit. We establish the following
theorem as discussed in Section II-B.
Theorem 1: For a given geometric embedding-based partitioning

solution P with a target delay �, FF placement can retime P to a delay
less than �+Dg if the SATs for all POs less than or equal to �.

Proof: The authors of [14] showed that P can be retimed to a
delay less than �+D if � is feasible, where D denotes the maximum
gate delay. The termD is from the fact that the optimal location may be
occupied by a gate with the maximum delay. In this case, we place the
FF right next to the gate, causing the delay to increase byD at the most.
The same argument is applicable in PPR problem, since FF placement
determines the optimal location of FFs along the interconnect. In case
the optimal location is occupied by a gate with the maximum delayDg ,
the final delay becomes � + Dg . If the FF placement is not used, the
final delay is �+De, where De denote the maximum edge delay and
Dg � De.

Fig. 7 illustrates an impact of FF placement on the final delay result.
d(e); l(v), and r(v), respectively, denote the edge delay, SAT, and re-
timing values. In Fig. 7(a), the FF is moved to a location closer to the
source node of the global interconnect. The corresponding delay result
is 11. This is what is typically done when performing retiming with no
interconnect length information. In Fig. 7(b), our FF placement step
finds a better FF location, where the FF is placed in the middle of the
global interconnect. The corresponding delay result is 9.

We observe that the optimal positioning of FFs improve the final
delay result obtained after retiming. Our related experiments shown in
Table III from Section V-B indicate that the final retiming delay im-
proves up to 15% for big sequential circuits. We emphasize that the
finer-grained FF placement is possible only through the geometric em-
bedding based partitioning. Finally, the complexity of GEO is that of
construction phase and FF placement, which is O(n logn + k) =
O(n logn). Our experimental results in Section V-C confirm that the
runtime of GEO indeed is comparable to that of other linear time algo-
rithms such as hMetis [25].



1690 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004

Fig. 7. Impact of FF placement on delay. d(e); l(v), and r(v) respectively denote the edge delay, SAT, and retiming values. (a) conventional FF placement with
� = 11, (b) optimal FF placement with � = 9. l(v) is recomputed after retiming.

V. EXPERIMENTAL RESULTS

A. Experimental Setting

We implemented our algorithms in C++/STL, compiled with gcc
v2.4, and tested on a SUN ULTRA SPARC60 at 360 Mhz. The
benchmark set consists of six biggest sequential circuits (b14o–b22o)
from ITC’99 [26], five from our industrial sponsor (ind1–ind5), and
seven biggest from ISCAS’89 [27] (s13207–s9234). We chose ITC
and ISCAS benchmark circuits since other benchmark circuits, such as
ISPD, do not provide signal direction and gate delay information. ITC
and ISCAS are the biggest circuits (in blif format) publically available
at this moment. Detailed statistics of the circuits are shown in Table I.

We report delay, wirelength, and runtime based on 8� 8 global
placement, where each slot has a unit size of 1� 1. Wirelength is the
sum of half-perimeter of bounding box of nets. Runtime is in seconds.
Edge delay is computed by the Manhattan distance between the two
end points. For example, an edge connecting a gate at location (0, 0)
and (7, 7) has a delay of 14. We assume that all gates have unit area
and unit delay, while primary inputs and primary outputs have zero
area and zero delay. FFs have unit area and zero delay. We obtained
the latest binary executable of hMetis [25] (v1.5.3) and HPM [16]
partitioners for comparison purpose. The bipartitioning area balance
skew is set to (0.49, 0.51) for hMetis and HPM to enforce tight area
balance among blocks.

Table I reveals the potential of retiming in further reducing the delay.
Under the “STA” column, we perform STA while setting the delay of
all edges to zero and report static delay. This serves as the lower bound
on the static delay since global placement assigns nonzero delay to
edges that connect gates in different location. Following the same
reasoning, we report the lower bound of retiming delay under “RTA”
column by performing our RTA while setting the delay of all edges to
zero. The ratio between the lower bound of retiming and static delay
(=retiming=static delay) is shown under the “R/S” column. We
summarize our observation as follows:

• For most of the circuits, the delay improvement after retiming is
significant—retiming enables up to 42% delay improvement for
big sequential circuits such as “b21o” and “b22o.” The average
delay improvement is 23%.

• We note these lower bounds are based on gate delays only.
Therefore, it is important to consider interconnects during global

TABLE I
SEQUENTIAL CIRCUIT CHARACTERISTICS

placement since the edge delay varies from 0 to 14 in case of
8� 8 global placement. The conventional nongeometric algo-
rithms that perform partitioning and retiming simultaneously
[14]–[16] do not consider this wide range of edge delays and
assume a single constantD for all interpartition edges.

B. STA Versus RTA

Table II shows the impact of different timing analysis engines on
static and retiming delay results. Under the “STA” columns, we use
STA to guide our global placement GEO and report both static and
retiming delay results. Under the “RTA” columns, we use RTA to
guide GEO. We report the ratio between RTA and STA-based results
(=RTA/STA) under the “RTA/STA” columns. The last column “r/s” is
the ratio between retiming delay of RTA and static delay of STA. Note
that <STA+GEO targets static delay minimization while RTA+GEO
performs retiming delay minimization. We summarize our observation
as follows.

• STA+GEO achieves 11% an average improvement on static delay
compared to RTA+GEO. This is expected since the focus of
STA+GEO is on static delay.



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004 1691

TABLE II
COMPARISON BETWEEN STA-BASED AND RTA-BASED GLOBAL PLACEMENT

TABLE III
IMPACT OF THE FF-PLACEMENT PHASE IN GEO ON DELAY IMPROVEMENT

• RTA+GEO achieves 19% an average improvement on retiming
delay compared to STA+GEO. Therefore, STA+GEO produces
better static delay results, while RTA+GEO produces better re-
timing delay results.

• The last column “r/s” reveals that the static delay STA+GEO pro-
duces is more than double the retiming delay RTA+GEO produces
for most of the circuits. Thus, retiming remains very attractive
in performance optimization, and our RTA based algorithm pro-
duces better retiming delay results compared to the conventional
STA based algorithm.

• The runtime of RTA+GEO is four times higher than STA+GEO.
This is due to the O(n2) worse case runtime complexity of our
Bellman–Ford variant RTA algorithm.However, we observed that
the sequential arrival and required times converge within a few it-
eration. Thus, the practical runtime isO(k�n), where k typically
ranges from 5 to 50.

Table III shows the impact of FF placement phase in GEO on delay
improvement. Under the “node type” columns, we report the type of the
beginning and ending nodes in the critical path. Under the “FF place-
ment” columns, we report the retiming delay before and after FF place-
ment and their ratio (=after/before). Under the “dly distr %” columns,

TABLE IV
IMPACT OF THE PARAMETERS RELATED TO DELAY-WEIGHT

COMPUTATION ON THE RETIMING DELAY

we report the percentage of the gate and edge delay on the overall crit-
ical path delay. We summarize our observation as follows.

• We observe from the “a/b” that FF placement can fine tune the
location of FFs along the global edges and improve the retiming
delay by 6% on the average. The delay improvement is as high
as 15% in “b21o,” one of the biggest circuits from ITC’99 [26]
benchmark suite. The FF placement does not improve the delay
of the critical paths that do not contain FFs.

• The “dly distr %” columns show that edge delay dominates the
overall path delay. On the average, the edge delay is responsible
for 75% of the overall path delay. This reveals the strong need for
rigorous interconnect driven optimization.

Table IV shows the impact of parameter tuning on the retiming
delay. The “alpha” determines the range of integer-based delay
weights, and “epsilon” determines the size of epsilon network as
discussed in Section IV-C. If alpha is set to zero, GEO degenerates
to cutize driven-mincut placement. From the results summarized in
Table IV, we conclude that the value of 10 serves well for both
alpha and epsilon. In order words, we pick the nets that connect the
top 10% of cells with small slack and compute the delay weights.
The range of these delay weights is (0, 10).

C. Comparison to the Conventional Approaches

We use hMetis and HPM partitioners to compare to GEO. hMetis
and HPM performs partitioning only, so we need subsequent floor-
planning to determine the location of these partitions. GEO is a
min-cut-based global placer, so it does not need a separate floor-
planning. We chose the polish expression-based slicing floorplanning
[28] as opposed to the sequence pair-based nonslicing floorplanning
[29], since m� n slot assignment is slicing-floorplanning.

Table V shows the comparison among: 1) hMetis [25] + SA
(SA-based floorplanning[28]); 2) HPM [16] + SA; and 3) GEO. The
first approach is a typical example of the conventional method, where
partitioning is performed first to divide the circuit and the subsequent
floorplanning determines the location of these partitions. The second
approach combines partitioning and retiming and performs floorplan-
ning separately. GEO combines all these steps for more effective delay
improvement. For all three approaches, we report retiming delay,
wirelength, and runtime based on 8� 8 global placement results. We
summarize our observation as follows.



1692 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 23, NO. 12, DECEMBER 2004

TABLE V
COMPARISON AMONG 1) hMetis + SA-BASED FLOORPLANNING);

2) HPM+ SA; AND 3) GEO

• After combining partitioning and retiming as in HPM + SA, we
improve the retiming delay result of hMetis+SA by 10% on the
average.

• We can further improve the HPM + SA result by 12% on the av-
erage with our GEO. This convincingly demonstrates the advan-
tage of our geometric embedding-based unified approach over
the conventional nongeometric embedding approaches for delay
minimization.

• hMetis+SA obtains the best wirelength results, which are about
20% better than others. We note that the cutsize/wirelength ad-
vantage of hMetis results in positive impact on delay. How-
ever, more rigorous delay optimization throughGEO improves the
delay results further.

• We note that the runtime overhead of GEO is reasonable. Both
hMetis + SA and HPM + SA need the subsequent SA-based
floorplanning to find the location of the partitions, and SA-based
approaches typically suffers from huge runtime and time-con-
suming parameter tuning.

VI. CONCLUSION AND ONGOING WORKS

In this paper, we proposed a unified approach to partitioning,
floorplanning, and retiming for effective and efficient performance
optimization. The integration enables partitioning to exploit the geo-
metric delaymodel provided by the underlying floorplan. Simultaneous
consideration of partitioning and retiming based on the geometric
delay model enables us to hide global interconnect latency more
effectively. We are currently trying to improve the wirelength results
of GEO. In addition, instead of an expensive call to O(k�n) RTA
engine for exact path analysis, we plan to perform incremental timing
analysis for sequential circuits. Lastly, we plan to integrate buffer
insertion into our RTA for delay and power minimization.

REFERENCES

[1] J. Cong, L. He, C. K. Koh, and P. H.Madden, “Performance optimization
of VLSI interconnect layout,” Integration, VLSI J., pp. 1–94, 1996.

[2] C. J. Alpert, T. F. Chan, A. B. Kahng, I. L. Markov, and P. Mulet, “Faster
minimization of linear wirelength for global placement,” IEEE Trans.
Computer-Aided Design, vol. 17, pp. 3–13, Jan. 1998.

[3] M. A. Breuer, “Class of min-cut placement algorithms,” in Proc. ACM
Design Automation Conf., 1997, pp. 284–290.

[4] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich, “GOR-
DIAN: VLSI placement by quadratic programming and slicing opti-
mization,” IEEE Trans. Computer-Aided Design, vol. 10, pp. 356–365,
Mar. 1991.

[5] H. Eisenmann and F. M. Johannes, “Generic global placement and floor-
planning,” in Proc. ACM Design Automation Conf., 1998, pp. 269–274.

[6] W. J. Sun and C. Sechen, “Efficient and effective placement for very
large circuits,” IEEE Trans. Computer-Aided Design, vol. 14, pp.
349–359, Mar. 1995.

[7] S. Hur and J. Lills, “Mongrel: Hybrid techniques for standard cell
placement,” in Proc. IEEE Int. Conf. Computer-Aided Design, 2000,
pp. 165–170.

[8] M. Wang, X. Yang, and M. Sarrafzadeh, “Dragon 2000: Fast standard-
cell placement for large circuits,” in Proc. IEEE Int. Conf. Computer-
Aided Design, 2000, pp. 260–263.

[9] M. C. Yildiz and P. H.Madden, “Improved cut sequences for partitioning
based placement,” in Proc. ACM Design Automation Conf., 2001, pp.
776–779.

[10] J. Cong, “An interconnect-centric design flow for nanometer technolo-
gies,” in Proc. Int. Symp. VLSI Technol., Syst., Applicat., 1999, pp.
54–57.

[11] E. L. Lawler, K. N. Levitt, and J. Turner, “Module clustering tominimize
delay in digital networks,” IEEE Trans. Computer-Aided Design, vol.
C-18, no. 1, pp. 47–57, 1966.

[12] R. Murgai, R. K. Brayton, and A. S. Vincentelli, “On clustering for min-
imum delay/area,” in Proc. IEEE Int. Conf. Computer-Aided Design,
1991, pp. 6–9.

[13] R. Rajaraman and D. F. Wong, “Optimal clustering for delay minimiza-
tion,” in Proc. ACM Design Automation Conf., 1993, pp. 309–314.

[14] P. Pan, A. K. Karandikar, and C. L. Liu, “Optimal clock period clustering
for sequential circuits with retiming,” IEEE Trans. Computer-Aided De-
sign, vol. 17, pp. 489–498, June 1998.

[15] J. Cong, H. Li, and C. Wu, “Simultaneous circuit partitioning/clustering
with retiming for performance optimization,” in Proc. ACM Design Au-
tomation Conf., 1999, pp. 460–465.

[16] J. Cong, S. K. Lim, and C. Wu, “Performance driven multi-level and
multiway partitioning with retiming,” in Proc. ACM Design Automation
Conf., 2000, pp. 274–279.

[17] C. E. Leiserson and J. B. Saxe, “Retiming synchronous circuitry,” Algo-
rithmica, pp. 5–35, 1991.

[18] A. Ranjan, A. Srivastava, V. Karnam, and M. Sarrafzadeh, “Layout
aware retiming,” in Proc. Great Lakes Symp. VLSI, 2001, pp. 25–30.

[19] I. Neumann and W. Kunz, “Layout driven retiming using the coupled
edge timing model,” IEEE Trans. Computer-Aided Design, vol. 22, pp.
825–835, July 2003.

[20] J. Cong and D. Z. Pan, “Interconnect delay estimation models for syn-
thesis and design planning,” in Proc. Asia South Pacific Design Automa-
tion Conf., 1999, pp. 97–100.

[21] R. Bellman, “On a routing problem,” Quart. Appl. Math., vol. 6, pp.
87–90, 1958.

[22] C. Fiduccia and R. Mattheyses, “A linear time heuristic for improving
network partitions,” in Proc. ACM Design Automation Conf., 1982, pp.
175–181.

[23] J. Cong and S. K. Lim, “Edge separability based circuit clustering with
application to circuit partitioning,” in Proc. Asia South Pacific Design
Automation Conf., 2000, pp. 429–434.

[24] , “Multiway partitioning with pairwise movement,” in Proc. IEEE
Int. Conf. Computer-Aided Design, 1998, pp. 512–516.

[25] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Application in VLSI domain,” in Proc. ACM Design
Automation Conf., 1997, pp. 526–529.

[26] ITC 1999 Benchmark Suite [Online]. Available: http://www.cad.
polito.it/tools/9.html

[27] ISCAS 1989 Benchmark Suite [Online]. Available: http://www.cbl.
ncsu.edu

[28] D. F. Wong and C. L. Liu, “Floorplan design of VLSI circuits,” Algo-
rithmica, pp. 263–291, 1989.

[29] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle
packing based module placement,” in Proc. IEEE Int. Conf. Com-
puter-Aided Design, 1995, pp. 472–479.


