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Edge Separability-Based Circuit Clustering With
Application to Multilevel Circuit Partitioning
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Abstract—In this paper, we propose a new efficient ( log )
connectivity-based bottom-up clustering algorithm called edge
separability-based clustering (ESC). Unlike existing bottom-up
algorithms that are based on local connectivity information of the
netlist, ESC exploits more global connectivity information using
edge separability to guide the clustering process, while carefully
monitoring cluster area balance. Exact computation of the edge
separability ( ) for a given edge = ( ) in an edge-weighted
undirected graph is equivalent to finding the maximum flow
between and . Since the currently best known time bounds for
solving the maximum flow problem is ( log( 2 )), due
to Goldberg and Tarjan (Goldberg and Tarjan, 1988), the compu-
tation of ( ) for all edges in requires ( 2 log( 2 ))
time. However, we show that a simple and efficient algorithm
CAPFOREST (Nagamochi and Ibaraki, 1992) can be used to
provide a good approximation of edge separability (within 9.1%
empirical error bound) for all edges in without using any
network flow computation in ( log ) time. Our experimental
results based on large-scale benchmark circuits demonstrate the
effectiveness of using edge separability in the context of multilevel
partitioning framework for cutsize minimization. We observe
that exploiting edge separability yields better quality partitioning
solution compared to existing clustering algorithms (Sun and
Sechen, 1993), (Cong and Smith, 1993), (Huang and Kahng,
1995), (Ng et al., 1987), (Wei and Cheng, 1991), (Shin and Kim,
1993), (Schuler and Ulrich, 1972), (Karypis et al., 1997), that rely
on local connectivity information. In addition, our ESC-based
iterative improvement based multilevel partitioning algorithm
LR/ESC-PM provides comparable results to state-of-the-art
hMetis package (Karypis et al., 1997), (Karypis and Kumar, 1999).

Index Terms—Clustering, edge separability, multilevel parti-
tioning.

I. INTRODUCTION

DUE TO substantial advances in very large scale integrated
(VLSI) technology, designers are facing a rapid increase

in system complexity. One natural approach to designing
highly complex systems is to decompose the large system
into a set of smaller subsystems recursively and carry out
the design hierarchically. In the last ten years, hierarchical
algorithms have been applied with dramatic results to several
important areas in VLSI computer-aided design (CAD). Con-
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current with the steady advances in VLSI design, hierarchical
methods for scientific computation have also emerged as
the only viable class of scalable solutions for mathematical
problems in the gigascale range. These so-called multilevel
methods model problems across many levels of resolution and
efficiently manage local and global communication within and
between levels. Typically, they converge in the optimal time
order to solutions equal or superior to those obtained by non-
hierarchical means. They have had enormous impact in many
fields. General examples include wavelets in signal and image
processing, domain decomposition methods in computational
fluid dynamics, multigrid in numerical PDE simulation, and
fast multipole methods in large-scale particle simulations. The
multilevel approach has been successfully applied to several
areas of VLSI CAD, including circuit partitioning in
package [10], circuit placement in algorithm [12], and
parasitic extraction in package [13].1

In order to design a multilevel algorithm for a particular class
of problems, one must decide how to: i) improve an existing so-
lution at a given level; ii) aggregate information at finer levels
into information at coarser levels; iii) interpolate information at
coarser levels into information at finer levels; and iv) solve the
problem at the coarsest level of representation as accurately as
possible. The circuit clustering method tries to identify closely
connected components from the given netlist. The clustering re-
sult is then used to derive a smaller netlist by grouping nodes in
the same cluster together. This clustering process can be recur-
sively applied to the given netlist, and the corresponding multi-
level representation of the netlist can be constructed to capture
the natural hierarchy from the given circuit. Thus, an efficient
circuit clustering method is indispensable to design a multilevel
algorithm for several important areas in VLSI CAD.

Most clustering heuristics are bottom-up in nature; each cell
initially belongs to its own cluster, and clusters are gradually
grown into larger clusters from merging with others.2 If
the clustering is applied once, we establish two-level cluster
hierarchy. In general, we can apply clustering repeatedly
to obtain multilevel cluster hierarchy (we assume two-level
unless otherwise specified).3 Depending on the objective,

1We note that the hierarchical clustering and min-cut exchange (HCME)
method [14] is the first work that introduced multilevel partitioning into VLSI
placement.

2We note that the well-known ratio-cut method [7] is a top-down clustering
method. In [7], the given circuit is recursively partitioned into clusters, while
minimizing the ratio-cut objective. This method can exploit more global infor-
mation from the circuit, but usually at the cost of large computation time.

3Multilevel approaches are relatively new, and most of the existing clustering
works are developed in two-level framework. Thus, the investigation on the pos-
sible extension of existing two-level works into multilevel framework is much
needed.
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Fig. 1. (a) Two local connectivity (= w(e))-based clustering metrics density
[4], [5] (maximize) and ratio cut [7] (minimize) of C . (b) w(e) � �(e) due to
additional paths p and p that connect u and v, where �(e) denotes the edge
separability of e.

clustering algorithms can be classified into cutsize- and per-
formance-driven methods. Cutsize-driven clustering methods
can be further grouped into connectivity-based approaches
[3]–[6], [8], [9], and signal-flow-based approaches [15], [16].
Performance-driven clustering methods can be further grouped
into ones that are designed for combinational circuits [17]–[20],
and for sequential circuits with retiming [21]–[23]. Some of
the recent partitioning works that exploit multilevel cluster
hierarchy include [4], [10], [11], and [23]–[29]. A survey of
various clustering and partitioning algorithms up to 1995 can
be found in [30].

In order to identify closely connected components in the
given circuit, the connectivity information among cells in the
given circuit plays an important role in cutsize-driven parti-
tioning. Therefore, connectivity-based approaches and their
multilevel extension have drawn a lot of attention recently.4 In
spite of the efficiency from its simple nature, however, existing
connectivity-based approaches suffer from a limitation—the
clustering process is guided by local connectivity-based greedy
merging. In other words, the neighboring node to be clustered
together is chosen solely based on the weight of the edges that
connect the candidate nodes. This locality in clustering decision
may lead to suboptimal decomposition of the circuit. For a
given edge in an undirected graph ,
with vertex size function and edge weight function ,
Fig. 1(a) shows two well-known clustering methods that use
edge weight —Density [4], [5] (for maximization) and
ratio cut [7] (for minimization). In both methods, one can see
that the edge weight serves as the main criteria for the
clustering process. However, the edge weight does not
estimate how tightly and are connected in . In fact, there
may exist additional paths that connect and other than
edge itself as illustrated in Fig. 1(b). In order to compute the
connectivity between and after considering all paths, we
need to compute the mincut, the minimum cutsize among
all the cuts that separate and in .

4This paper deals with the conventional cutsize objective, and our edge sep-
arability based clustering (ESC) algorithm belongs to the cutsize-driven-based
multilevel approach.

If and are connected via an edge, i.e., ,
we define the edge separability of to be the value of the
mincut and denote it as shown in Fig. 1(b). Clearly, edge
separability provides more global connectivity information
between and compared to local edge connectivity .
However, the best-known complexity for exact computation of

is using the maximum flow algorithm
by Goldberg and Tarjan [1]. Therefore, the computation of
for all edges in requires time. Further-
more, if we want to exploit the to guide bottom-up clustering
process, we not only have to compute of all edges in , but
also need proper update of after merging of and since

will be modified. This is extremely time consuming, even for
moderate-size graphs with a few thousand vertices. However, we
show that a simple and efficient time algorithm,
named [2], can be used to provide a good estimation
of for all edges in without using any flow computation.

Our experimental results based on large-scale benchmark cir-
cuits demonstrate the effectiveness of using edge separability
in the context of multilevel partitioning framework for cutsize
minimization. First, we observe that exploiting edge separability
yields better quality partitioning solution compared to existing
clustering algorithms proposed in the literature including ab-
sorption [3], density [4], [5], rent parameter [6], ratio cut [7],
closeness [8], connectivity [9], and first choice [10] methods.
Second, our -based iterative-improvement-based multilevel
partitioning algorithm provides comparable re-
sults to state-of-the-art [10] and [11].

The remainder of the paper is organized as follows. Section II
presents the problem formulation for -way partitioning. Sec-
tion III presents theoretical backgrounds on the edge separa-
bility. Section IV presents our algorithm. Section V pro-
vides experimental results. Section VI concludes the paper.

II. PROBLEM FORMULATION

Given a gate-level circuit (combinational or sequential) netlist
, let denote cells that repre-

sent the basic elements in such as simple gates or flip-flops
(FFs), and denote nets that specify con-
nection among cells in . We model with a hypergraph

, where the vertex set repre-
sents cells, and the hyperedge set rep-
resents nets in . Each hyperedge is a nonempty
subset of and has 1-to-1 correspondence to nets in . Each
vertex is associated with area , and each hyperedge

is associated with a cost . Under the cost-1 metric,
if spans more than 1 block, i.e., contains cells that

are partitioned into more than 1 block, and 0 otherwise. Under
the sum of external degrees (SOED) metric, , if spans

blocks and . From a different perspective, SOED is the
sum of out-going nets from each block. A net with nonzero cost
is called cut, and the sum of the cost of all nets is called cutsize,
i.e., . For a given set of area constraints
for , the -way circuit partitioning problem seeks
a partition of into nonempty disjoint sets
such that is bounded by , and such that the
cutsize is minimized.
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III. THEORETICAL BACKGROUNDS

In this section, we provide theoretical backgrounds on the
concept of edge separability, edge contractibility, and maximum
adjacency (MA) vertex ordering for an edge-weighted undi-
rected graph. Then, we discuss on how to compute a tight esti-
mate of edge separability efficiently for an application in circuit
clustering.

A. Edge Separability and Contractibility

The input netlist is modeled with a simple undirected
graph called a netlist graph with size function
for each and weight function for each . For
each net , we form a -clique and assign a weight of

to each edge in the -clique.5 Let and
. A nonempty subset defines a cut, and the cutsize

of cut , denoted by , is defined as the sum of weights of
outgoing edges from vertices in . If cut consists of single
vertex , we use instead of and alternatively call it
degree of . For a given edge , denotes

, and denotes .
A cut is said to separate vertices and , if and

, or and . A cut that min-
imizes in is called minimum cut, and cutsize of min-
imum cut is called minimum cutsize and denoted by .
The minimum degree of , denoted by , is defined as

. For , with , we
define mincut to be the value of the minimum cutsize
among the cuts separating and and denote it . From
the maximum flow minimum cut theorem by Ford and Fulk-
erson [31], we can obtain by computing the maximum
flow between and . When , is called
edge separability and denoted by . Formally, we define this
as follows.

Definition 1 (Edge Separability): For an edge
in an undirected graph with vertex size func-

tion and edge weight function , edge separability of , de-
noted by , is defined as the minimum cutsize among the cuts
separating and in .

The following lemma provides lower and upper bounds of the
edge separability.

Lemma 1: For every edge in , where
denotes edge separability of , denotes the degree of vertex

, and denotes , the following inequality
holds:

The proof is straightforward. An illustration is shown in Fig. 2.
For a given edge , we define contraction of

edge by merging with , removing from , replacing each
edge of the form ( , ) with ( , ), and updating size of by

. If this process creates parallel edges, we
merge them into a single edge whose weight is equal to the sum

5We merge all parallel edges into single edge during the transformation to
make G simple.

Fig. 2. (a) For e = (x; y), w(e) = 1:0, �(e) = 2:0, c(x) = 3:0, c(y) =
7:0, validating Lemma 1. (b) contracting e = (x; y), where vertices x and y
are merged into x. (c) parallel edges are merged.

of weights of the parallel edges as illustrated in Fig. 2. We denote
the graph obtained by contracting all edges in subset as

, where is the graph obtained from
by this contraction, is the updated vertex size function, and
is the updated edge weight function of the resulting graph. Note
that the actual number of contractions performed may not equal

, since some of edges in are merged into others during
the series of edge contractions. Then, the edge contractibility is
defined as follows.

Definition 2 (Edge Contractibility): Let be the cutsize of a
cut in . An edge is called contractible
with respect to if and only if . If is contractible
with respect to , we simply call contractible.

Thus, if is contractible with respect to , we have
. This indicates that computing

is reduced to computing once such and are
found. The intuition behind edge contractibility is that the two
end vertices and of a contractible edge are
guaranteed to be on the same side of some minimum cut so
that is preserved in after the contraction of .

B. Tighter Lower Bound of Edge Separability

Computation of the edge separability for a given edge
in an edge-weighted undirected graph is equiva-

lent to finding the maximum flow between and . Since the
currently best known time bounds for solving the maximum
flow problem is , due to Goldberg and
Tarjan [1], the computation of for all edges in requires

time. Thus, direct computation of edge
separability for all edges in is extremely time consuming,
even for moderate-size graphs with a few thousand vertices.
Lemma 1 indicates that serves as a lower bound of ,
but we found out that (i) there exists a better approximation
of , (ii) it requires only to compute the
approximation of for all edges in .

Nagamochi and Ibaraki [2] proposed a novel algorithm
named that computes , i.e., the minimum cutsize
of the given without any flow computation.

repeatedly calls a subroutine that com-
putes the set of contractible edges in in time.

is based on traversing vertices of according to
the MA ordering of vertices in . The intuition behind MA
ordering is that it chooses a vertex that is most tightly connected
to the vertices that are already in the order. Then,
traverses vertices of in MA ordering, while labeling each
edge with some value . Finally, the contractible edges are
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Fig. 3. CAPFOREST algorithm [2] for computing contractible edge set Z(G)
in O(m+ n logn) time. The vertices are visited in MA ordering.

computed by comparing to , where denotes the
minimum cutsize discovered so far.6

For two nonempty subset , , where , let
denote the sum of weights of edges between and .

The MA ordering of vertices in defined as follows:
Definition 3 (MA Ordering): An ordering of all vertices in

is called MA ordering in , if it satisfies for all

If set denotes the vertices that have already been selected and
is a candidate vertex, the degree of connection is measured

by , i.e., the sum of weights of edges between and .
The description of is shown in Fig. 3. Initially, all
vertices are unvisited and all edges are unscanned.
maintains variables for each vertex and for each edge
, where is , i.e., the sum of the weights of the edges

between and the set of vertices already visited in MA or-
dering. for is the value of when is scanned
from . Then, always chooses the unvisited vertex
with maximum and scans all its unscanned outgoing edges.
The contractible edge set is computed by comparing
to , where denotes the minimum cutsize discovered so
far. does not require precomputation of in
order to calculate contractible edge set . Instead, the min-
imum degree is used as a starting point to perform gradual
update on . updates at the
contraction of , where denotes updated degree
of vertex .

manages unscanned vertices with Fibonacci
heap for which (line 7) takes time while

(line 5) takes time. Since the while loop repeats
times, the algorithm spends to manage vertex

heap. In addition, scans all edges once (line 8).
Thus, the overall time complexity is .

An illustration of algorithm is shown in Fig. 4.
The given edge weighted graph with and

is shown in (1), where denotes the minimum cut

6We note that the first work that used the MA ordering for partitioning ap-
plication is by Alpert and Kahng [32]. In their approach, MA ordering is com-
puted and split into partitions using dynamic programming. Our ESC clustering
algorithm is also based on MA ordering. However, ESC does not use the vertex
ordering itself, but it uses edge label q(e) computed by CAPFOREST that visits
vertices in MA order.

of . The vertex at the upper left corner is randomly chosen as
the first vertex in MA ordering since initially for all

. Then, visits each vertex in MA ordering
by choosing with maximum and labels each edge with

. (12) shows that is still preserved even
after contraction of edges in .

In the original paper by Nagamochi and Ibaraki [2], the fol-
lowing theorem is provided.

Theorem 1 ([2]): For every edge in
, where denotes the edge label computed by
algorithm and denotes the edge separability

of , the following inequality holds:

Proof: The proof is based on the concept of sparse -con-
nected spanning subgraph of a -connected graph [33], and
mathematically demanding. Since the introduction, many at-
tempts [34]–[36] have been made in the graph connectivity com-
munity to simplify the proof.

We can further show the relationship between and .
Lemma 2: For every edge in

, where denotes the weight of
and denotes the edge label computed by
algorithm, the following inequality holds:

Proof: Assume that and for
and that , where denotes the set
of vertices visited by based on MA ordering. Let

. If ,
, since . Otherwise, there exists a vertex

, such that . Then,
, showing that .

Finally, from Lemma 1, Theorem 1, and Lemma 2, we estab-
lish the following theorem.

Theorem 2: For every edge in
, where denotes the weight of ,

denotes the edge label computed by al-
gorithm, denotes the edge separability of , and
denotes , the following inequality holds:

In VLSI circuits, , since the size of nets is bounded
by a relatively small constant ( 100). Under such an assump-
tion, the complexity of computing , , , and
are , , , and , respectively. Sec-
tion V provides detailed statistics of these values collected from
benchmark circuits as well as the effectiveness of using them in
the context of multilevel partitioning.

IV. EDGE-SEPARABILITY-BASED CLUSTERING ALGORITHM

In this section, we discuss our graph-connectivity-based mul-
tilevel clustering algorithm ESC that runs in time.
We provide an overview of the ESC algorithm, followed by
a discussion on the edge contraction algorithm, under a given
cluster-size constraint. Lastly, an application of ESC algorithm
in the context of multilevel partitioning is presented.
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Fig. 4. Illustration of CAPFOREST algorithm. Values inside vertex x denotes r(x), and edge label denotes w(e)=q(e)=�(e). Visited vertices are shown in dark
circles, and scanned edges are shown in dotted lines.

A. Overview of ESC Algorithm

The ESC algorithm is a bottom-up clustering algorithm,
where clusters grow from the contraction of contractible edges.
This is the equivalence to merging two clusters that have direct
connection via a contractible edge. Each vertex belongs to its
own cluster initially, and the clusters grow from greedy merging
based on edge separability. The clustering process is guided
by , a better estimation of edge separability than
edge weight as shown in Theorem 2. The ESC clustering
algorithm can be applied repeatedly to build multilevel cluster
hierarchy. Assuming that denotes the minimum cutsize
discovered so far, the following provides overall flow of the
ESC algorithm that constructs -level cluster hierarchy.

1) Let .
2) Run and compute

.
3) Edges in are sorted into heap based on their rank

(to be defined in Section IV-B).
4) Remove edge from the top of and see if contraction

of violates the cluster-size constraint.7 If it satisfies the
constraint, contract , and update , and accordingly

7Note that we allow the merging of the vertex with both unmerged and merged
vertices. As a result, each cluster may contain an arbitrarily large number of
vertices up to the given size limit.

(to be discussed in Section IV-B). Repeat until is not
empty.

5) Repeat Steps 2 to 4 times to obtain -level cluster
hierarchy.

The contractible edge set is computed by comparing
to the minimum cutsize . However, does not require
precomputation of in order to calculate contractible
edge set . Instead, the minimum degree is used
as a starting point to perform gradual update on . More
specifically, upon the contraction of , we update

, where denotes updated degree of
vertex . Step 4 involves our algorithm explained
in the following Section IV-B.

B. Size-Constrained Edge Contraction

After the computation of contractible edge set , we
heapify edges in into edge heap . The rank of edge

in , denoted by , is defined to be ,
where denotes the edge label computes and

. All edges in are ordered in
descending order of their rank. The rank is computed in
such a way that it gives higher priority to edges with larger
values and edges whose contraction results in smaller increase
of degree. We use instead of
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Fig. 5. CONTRACT algorithm to grow clusters by contraction of edges in the
given contractible edge set Z(G) under size constraint A.

to encourage absorbing of dangling vertices (e.g., vertices
with connection to only one other cluster). Ties are randomly
broken. The following operations are used to manage edge
heap -based on edge rank :

• : build from edges in in
, where ;

• : return the edge with maximum rank from
the top of in ;

• : insert into in ;
• : update ordering of from the posi-

tion of in .
Fig. 5 shows algorithm that performs size-con-

strained edge contraction for given contractible edge set
and cluster size limit . Two major operations per-
forms areL i) building and managing edge heap -based on
edge rank and ii) updating the given graph upon each
edge contraction to obtain correct upon its termination.
After building from (line 1), removes edge

from the top of (line 3) and see if contraction of
violates the cluster size constraint (line 4). If it satisfies the con-
straint, and are removed from (line 5), and is updated
(line 6). Then, replaces each edge of the form ( , )
(lines 7 and 8) with ( , ) (line 9). If this process may create par-
allel edges due to the existing connection between and (line
10), they are merged into a single edge (line 11) whose weight is
equal to the sum of weights of the parallel edges (line 12). Then,
the maximum value among values of the parallel edges is as-
signed to to maintain a lower bound on (line 13).
The degree of is updated accordingly (lines 14 and 15) and
used to update the current minimum cutsize (lines 16 and 17).
Then, for each edge incident to (line 18), either
inserts into , if it was not in , but becomes contractible due
to the update of (line 19 and 20) or updates position of in

due to the update of and and, thus, (line 22).

Fig. 6. Description of ESC algorithm that builds a multilevel clustering
hierarchy.

Finally, the most updated is
returned (line 24).

If denotes and denotes the maximum de-
gree among vertices in , the complexity of is

, due to the time update of for
number of edges, which repeats for times in total. In

most cases, large nets ( 100) such as clock nets are ignored
during clustering and partitioning in VLSI circuit design. Then,
we may assume that the maximum degree is bounded by a
constant , which also implies that . Under such
an assumption, the time complexity of becomes

.

C. Extension to Multilevel Clustering

In the ESC algorithm, the combination of and
is repeated times to build -level cluster hierarchy.

During each call of , we can build a multiple-level
cluster hierarchy by establishing parent–child relation among
vertices. More specifically, upon contraction of ,
where remains in , becomes the parent of in a tree-like
cluster hierarchy. In order to guide the clustering process to
generate a balanced hierarchy, where clusters at each level
are of similar size, we impose different size constraint at
different level. More specifically, we impose a size limit of

at clustering at level , where .
Fig. 6 shows the ESC algorithm grows clusters by repeatedly
applying and under the given size
constraint . constructs
next coarser hypergraph based on the parent-child relation
obtained during edge contraction in time.
takes and takes time.
Therefore, the overall complexity of the ESC algorithm is

. An illustra-
tion of the ESC algorithm with is shown in Fig. 7.

D. Application to Multilevel Partitioning

In general, the impact of clustering is more visible when com-
bined with the subsequent partitioning. In such a case, clustering
is applied as a preprocess to reduce the problem size so that the
subsequent partitioning can optimize their objective functions
such as cutsize and wirelength more effectively.

ESC clustering can be used in the two-level partitioning
framework. First, a clustering of a netlist is generated,
then this clustering is used to induce the coarser netlist
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Fig. 7. Illustration of ESC algorithm with h = 2. Contractible edges are shown in thick lines, and arrows point to the edges contracted. The edge label means
w(e)=q(e)=t(e), and bold edge label denotes the updated w(e)=q(e) from contraction. (1–5) shows clustering under A = 2, and (6–8) shows clustering under
A = 3. (1) G, (2) Z(G) based on �� = �(G) = c(g) = 6, (4) �� = c(b) = 5, (6) Z(G) based on �� = 5.

from . Partitioning is then run once on to yield a solution
, and is projected to a new partitioning on top of .

Finally, partitioning is run a second time on using as its
initial solution. These first and second partitioning runs are
called a refinement step, which refers to the improvement of
an initial solution via local moves. The two-level partitioning
framework requires a two-level clustering hierarchy (original
and clustered level), which is obtained by applying clustering
once on top of the original circuit. Note that the two-level par-
titioning framework can be easily generalized to the multilevel
partitioning framework. The multilevel partitioning makes
use of a multilevel clustering hierarchy (original and several
intermediate levels), which is obtained by applying clustering
successively on top of the prior clustered netlist.

Let be the height of cluster hierarchy desired and de-
note netlist at level , where corresponds to the original (=
bottom level) netlist. In a multilevel framework, a clustering of

is used to induce the coarser netlist , then a clustering
of induces , and so on until the most coarsened netlist

is constructed. A bipartitioning solution
is found for , and this solution is then projected to

. is then refined by partitioning again. This
collaboration of partitioning solution projection and refinement
is called uncoarsening process, and it continues until a refined
partitioning of is obtained.

Definition 4 (Multilevel Bipartitioning): Let denote the
height of cluster hierarchy desired. Let denote netlist at level
, where corresponds to the original netlist and is

induced from by the clustering for
. The projection of bipartitioning solution
of onto is the solution ,

where and and and
and and .

Note that it is straightforward to extend this definition to that
of multilevel -way partitioning, where clusters are partitioned

into -blocks instead of two, i.e., ,
where denotes the -th partition at level .

Multilevel partitioning offers several advantages over two-
level partitioning. First, the single coarsening step of two-level
approaches can make too coarse representation of . Mul-
tilevel approaches enables coarsening to proceed more slowly,
giving the iterative engine more opportunities for refinement.
Second, multilevel approaches can be extremely efficient if a
fast clustering and refinement strategy is used. Refinement for
each netlist typically requires only a few iterations of par-
titioning to converge since it begins with a high-quality initial
solution. Finally, refinement proceeds with progressively larger
netlists, implying that the number of local moves performed
during a single iteration of partitioning becomes progressively
larger. This permits the refinement algorithm to avoid bad local
minima via big steps at high levels, while still being able to
find a good final solution via detailed refinement at low levels.
Section V provides various experimental results on multilevel
partitioning to demonstrate the impact of our clustering algo-
rithm ESC.

V. EXPERIMENTAL RESULTS

We implemented our algorithms in C++/STL, compiled with
gcc v2.4, and tested on an ULTRA SPARC60 at 360 MHz.
The benchmark circuits are from the Microelectronics Center
of North Carolina (MCNC) and ISPD’98 Benchmark Suite [37]
for ESC algorithm evaluation. We obtained the latest binary ex-
ecutable of the state-of-the-art cutsize-driven multilevel parti-
tioning algorithm [10] (v1.5.3) for the evaluation. We
report cutsize and runtime from 2-, 8-, 16-, and 32-way par-
titioning results. The area of the cells is assumed to be uni-
form, and all pads are included in the partitioning. 2-, 8-, 16-,
and 32-way algorithms use area skew of [ ], [

, ], [ , ], and
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TABLE I
STATISTICS OF w(e) (= EDGE WEIGHT), q(e) (= ESTIMATE OF EDGE

SEPARABILITY), �(e) (= EDGE SEPARABILITY), AND m(e)(=
minfc(x); c(y)g) FROM MCNC AND ISPD [37] BENCHMARK CIRCUITS.
THE AVERAGE VALUES FOR ALL EDGES ARE SHOWN. % DIFF SHOWS THE

PERCENTAGE DIFFERENCE BETWEEN q(e) AND �(e). TIME SHOWS THE

NORMALIZED CLUSTERING TIME TO �(e)-BASED SCHEME

[ , ], respectively. We use two
cutsize metrics: Cost 1 and sum of external degree (SOED).
Cost 1 counts the number of nets spanning more than one par-
tition, and SOED is the sum of outgoing nets from each parti-
tion. All cutsizes are based on a minimum of 20 runs. Runtimes
are measured in seconds and represent total elapsed CPU time.
The cluster hierarchy level is set to ten and the size limit is

for .

A. Statistical Analysis

Table I shows the statistics of (= edge weight), (=
estimate of edge separability computed by ), (=
edge separability), and for each edge

. We implemented Dinic’s blocking flow-based
max-flow algorithm [38] for efficient computation of the edge
separability . The edge capacity of the flow network is set
to , and we compute maximum flow from to and, thus,

mincut for each edge in . Nets that
connect more than 30 cells are ignored during the clique-based
transformation of the netlist into . We applied
on each circuit for the computation of . The complexity of
computing , , , and for all edges is ,

, , and , respectively, for all edges.
First, we observe that the average value of is about three

to ten times larger than that of . This means there are three
to ten neighboring nodes for each node in the circuit on the av-
erage. This increases the necessity of making the right decision
in choosing which one to cluster together. Second, we observe
that the average value of is about three times larger than
that of . This shows that there are an average of two addi-
tional paths that connect and , rather than itself. Thus, it
is worthwhile looking at these additional paths in determining
connectivity between and . Third, the average value of
is about three times larger than that of and very close to

TABLE II
PARTITIONING RESULTS FROM MCNC AND ISPD [37] BENCHMARK CIRCUITS.

THE MINIMUM CUTSIZE OF 20 RUNS OF LR BASED [16] MULTILEVEL

BIPARTITIONING IS SHOWN. RATIO SHOWS THE NORMALIZED

TOTAL TO �(e) RESULTS. TIME SHOWS THE NORMALIZED

PARTITIONING TIME TO �(e)-BASED SCHEME

. The average difference between , and is 9.1%.
This shows that is indeed a tight lower bound of , as
proved in Section III-B.

Second, we use , , , and to guide clus-
tering to validate the impact of using them in the context of
cutsize minimization-based partitioning. We use the multilevel
partitioning framework explained in Section IV-D for the eval-
uation of each clustering scheme. The edge contraction cost
functions we use are , , , and

. We use the [16] partitioning scheme for
refinement during the uncoarsening phase.8 We show in Table II
the bipartitioning cutsize results as well as the total partitioning
time normalized to that of . We observe that the best cutsize
results are obtained when and are used during clus-
tering. This means that both cost functions that are based on the
edge separability serve as an effective guidance for cutsize min-
imization. However, we note that the computation of in-
volves a prohibitive amount of runtime—as much as three days.
Thus, using proves to be the best option in terms of quality
and runtime tradeoff.

B. Comparison to Other Clustering Algorithms

For the given edge from a netlist graph
, whose contraction generates new larger cluster ,

the following well known clustering cost functions are proposed
in the literature.

1) Absorption [3] (maximize): The absorption of is de-
fined as . It measures the sum of
weights of edges “absorbed” into .

8We note that the performance of LR is more stable than that of FM [39]—FM

results vary significantly depending upon the random initial solution, whereas
LR generates more stable (and better) results regardless of the initial solutions.
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TABLE III
COMPARISON OF VARIOUS CUTSIZE DRIVEN BOTTOM-UP CLUSTERING ALGORITHMS IN TERMS OF MULTILEVEL LR BIPARTITIONING RESULTS. ALGORITHMS

IN COMPARISON INCLUDE ABSORPTION (ABS), DENSITY (DEN), RENT PARAMETER (REP), RATIO CUT (RTC), CLOSENESS (CLO),
CONNECTIVITY (CON), FIRST CHOICE (FC), AND OUR EDGE SEPARABILITY BASED METHOD (ESC). RATIO SHOWS

THE NORMALIZED TOTAL TO ESC RESULTS. TIME SHOWS THE TOTAL PARTITIONING TIME

2) Density [4], [5] (maximize): The density of is defined
as . It measures the “density” of by taking
the ratio of the edges “absorbed” in to the size of .

3) Rent Parameter [6] (minimize): The Rent parameter of
is computed as follows:

where is the average degree of vertices in , and
is the number of vertices in . A “better” placement can
be obtained from the smaller Rent parameter associated
with each cluster, according to the Rent’s rule.

4) Ratio Cut [7] (minimize): The ratio cut of is computed
as It is a ratio of the sum of weights of out-
going edges to the size of . It tries to identify “natural”
clusters by finding cuts that minimize .

5) Closeness [8] (maximize): The closeness between and
is defined as follows:

where denotes the average cluster size, and is
a user-specified parameter to determine the magnitude of
penalty term for generating large clusters. It measures the
“attraction” between two clusters based on local connec-
tivity information.

6) Connectivity [9] (maximize): The connectivity between
and is defined as follows:

It is another local connectivity based method that focuses
on: i) minimizing number of edges cut after contraction
and ii) preventing early formation of large clusters.

TABLE IV
COMPARISON BETWEEN FC (FIRST CHOICE) [10] AND ESC IN TERMS OF:
1) THE NUMBER OF NETS AT THE TOP LEVEL CLUSTER HIERARCHY AND

2) FINAL CUTSIZE AT THE BOTTOM LEVEL. THE TOTAL LEVEL IS SET TO

ln(#cell). RATIO SHOWS THE NORMALIZED TOTAL TO ESC RESULTS

7) First Choice [10] (maximize): The connectivity between
and is defined as follows:

where denotes all hyperedges that contain both
and . Notice that this connectivity value is identical to

from the given netlist graph . In First
Choice, however, the vertices are visited in a random
order instead of a fixed one. Thus, we do not need to build
the netlist graph explicitly since we can compute
on-the-fly.
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TABLE V
COMPARISON AMONG hMetis [10], [40], hMetis� Kway [11], AND OUR MULTILEVEL AND MULTIWAY PARTITIONING ALGORITHM LR=ESC� PM.

2-WAY PARTITIONING RESULTS ARE BASED ON COST 1 METRIC, WHILE OTHERS ARE BASED ON SOED METRIC.
RATIO SHOWS THE NORMALIZED TOTAL TO hMetis RESULTS. TIME SHOWS THE TOTAL RUNTIME

In order to measure and compare the impact of these clustering
algorithms, we adopt the multilevel partitioning framework ex-
plained in Section IV-D. In this case, the clustering cost func-
tions mentioned above are used to rank the edges to be con-
tracted except for the First Choice. All of the above algorithms
do not impose restrictions on grouping between already merged
vertices. Note that the first four cost functions are defined in
terms of a single cluster rather than a single edge that connects
two clusters, i.e., . However, it is straightforward to
extend these cost functions so that we pick the edge that maxi-
mizes these costs during edge contraction. We observe that local
connectivity information plays a major role in determining
the sequence of edge contraction for the seven schemes shown
above. ESC uses , which is defined in Section IV-B as the
contraction cost function.

Table III shows the comparison among various bottom-up
clustering algorithms introduced in this section in the multi-
level partitioning framework. We use partitioning again for
cutsize refinement. Algorithms in comparison include absorp-
tion [3], density [4], [5], rent parameter [6], ratio cut [7], close-
ness [8], connectivity [9], first choice [10], and our edge separa-
bility-based method. We observe that ESC outperforms all other
algorithms that rely on local connectivity information in terms
of bipartitioning results. TIME includes total clustering and par-
titioning, which are comparable in all cases. In particular, we
compare our ESC clustering algorithm to the First Choice ( )
scheme used in [10]. We observe that ESC outper-
forms by 11.7% on ISPD benchmark circuits in terms of
bipartitioning results. This ESC result is also very compa-
rable to that of as shown in the next set of experimental
results (Table V). The success of not only comes from

clustering but also complex V-cycle and v-cycle refinement
schemes used in . However, our connectivity based ESC
clustering does not require any additional refinement schemes
to produce comparable results to .

Table IV shows the comparison between [10] and ESC in
terms of: i) the number of nets at the top level cluster hierarchy
and ii) final cutsize at the bottom level. The former is the cutize
among clusters at the top level and gives good indication on
how good is the clustering in terms of cutsize minimization. The
number of level is fixed at . We observe from Table IV
that ESC generates consistently a smaller number of nets at the
top-level netlist, with an average improvement of 10% over .
Thus, the probability that ESC gives better initial partitioning
result is higher than that of . In addition, this advantage at the
top level is propagated all the way down to the bottom level and
results in an average final cutsize improvement of 13% over ,
as seen in the last two columns.

C. Comparison to Other Partitioning Algorithms

In order to validate the effectiveness of using , we devel-
oped a multilevel and multiway partitioning algorithm named

—it performs bipartitioning algorithm [16] on
top of multilevel cluster hierarchy. This is then used as the
bipartitioning engine for pairwise movement-based multiway
partitioning framework [41]. In , matching of -blocks
are computed, and bipartitioning is applied simultaneously on
these block pairs. At the end of the current pass, a new block
paring configuration is derived, depending on the cutsize gain
of the previous pass, which continues until no more gain is ob-
served. We observe from the results summarized in Table V
that obtains comparable results to state-of-the-art

[10] and [11] in terms of 2-, 8-, 16-,
and 32-way partitioning results. The runtime of is
also comparable to that of algorithms.9

9A direct runtime comparison between our algorithms and hMetis algo-
rithms is not possible due to the use of different machines. It is reported in
[40] that hMetis 2-way results are from Pentium Pro 4-way SMP at 200 MHz.
Other hMetis� Kway results [11] are from Pentium II at 300 MHz.
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VI. CONCLUSION

We presented a new efficient multilevel bottom-up clustering
algorithm called ESC, which exploits global connectivity infor-
mation, called edge separability, to guide the clustering process.
Our experimental results demonstrate the effectiveness of using
edge separability in the context of multilevel partitioning frame-
work for cutsize minimization. Our recent studies on perfor-
mance driven partitioning [23], [27], [29] also demonstrate that
ESC clustering is well suited for constructing a circuit hierarchy
for effective performance optimization. In addition, we observe
from our recent studies on multilevel placement [12] that ESC
is effective in constructing a circuit hierarchy for effective wire-
length optimization.
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