
Partitioning and Placement for
Buildable QCA Circuits

Ramprasad Ravichandran
�
, Mike Niemier

�
, and Sung Kyu Lim

�
�
College Of Computing, Georgia Institute of Technology�

School of Electrical and Computer Engineering, Georgia Institute of Technology�
raam@cc, mniemier@cc, limsk@ece � .gatech.edu

Abstract— Quantum-dot Cellular Automata (QCA) is a novel
computing mechanism that can represent binary information
based on spatial distribution of electron charge configuration
in chemical molecules. In this paper, we present partitioning and
placement algorithms for a large-scale automatic QCA layout.
The purpose of zone partitioning is to initially partition a given
circuit such that a single clock potential modulates the inter-
dot barriers in all of the QCA cells within each zone. We then
place these zones during our placement step. We identify several
objectives and constraints that will enhance the buildability of
QCA circuits and use them in our optimization process. The
results are intended to define what is computationally interesting
and could actually be built within a set of predefined constraints.

I. INTRODUCTION

Nanotechnology and devices will have revolutionary impact
on the Computer-Aided Design (CAD) field. Similarly, CAD
research at circuit, logic and architectural levels for nano
devices can provide valuable feedbacks to nano research and
illuminate ways for developing new nano devices. It is time
for CAD researchers to play an active role in nano research.

Our goal in this paper is to explain how CAD can help
research to move from small circuits to small systems of
quantum-dot cellular automata (QCA) [1], [2] devices shown
in Figure 1. We leverage our ties to physical scientists who
are working to build real QCA devices. Based upon this inter-
action, a set of near-term buildability constraints has evolved
- essentially a list of logical constructs that are viewed as
implementable by physical scientists in the nearer-term. Until
recently, most of the design optimizations have been done by
hand. Then these initial attempts to automate the process of
removing a single, undesirable, and unimplementable feature
from a design were quite successful. We now intend to use
CAD, especially physical layout automation, to address all
undesirable features of design that could hinder movement
toward a “buildability point” in QCA. In particular, we propose
QCA partitioning and global placement algorithms so that
the total wire crossing is minimized and 4-phase clocking
constraints are satisfiled. The net result should be an expanded
subset of computationally interesting tasks that can be accom-
plished within the constraints of a given buildability point.
CAD will also be used to project what is possible as the state-
of-the-art in physical science expands.

(a) (b) (c)

quantum
tunneling

e-

Fig. 1. (a) Schematic representation of a QCA cell, (b) QCA majority gate
that can be configured to implement AND2 and OR2 functions, (c) horizontal
wire is 90-degree wire and vertical wire is 45-degree wire. Crossing is allowed
between 90-degree and 45-degree wires.

II. PROBLEM FORMULATION

A. Overview of the Approach

QCA placement is divided into three steps: zone parti-
tioning, zone placement, and cell placement. The purpose of
zone partitioning is to decompose an input circuit such that a
single potential modulates the inner-dot barriers in all of the
QCA cells that are grouped within a clocking zone. Unless
QCA cells are grouped into zones to provide zone-level clock
signals, each individual QCA cell will need to be clocked.
The wiring required to clock each cell individually would
easily overwhelm the simplicity won by the inherent local
interconnectivity of the QCA architecture. However, because
the delay of the biggest partition also determines the overall
clock period, the size of each partition must also be determined
carefully. In addition, four-phase clocking imposes a strict
constraint on how to perform partitioning. The zone placement
step takes as input a set of zones–with each zone assigned a
clocking label obtained from zone partitioning. The output of
zone placement is the best possible layout for arranging the
zones on a two dimensional chip area. Finally, cell placement
visits each zone to determine the location of each individual
logic QCA cell – (cells are used to build majority gates). Our
recent work on cell placement is available in [3].

B. Zone Partitioning Problem

A gate-level circuit is represented with a directed acyclic
graph (DAG) �����
	��� . Let � denote a partitioning of � into�

non-overlapping and non-empty blocks. Let ����������	����� be
a graph derived from � , where ��� is a set of logic blocks and
��� is a set of cut edges based on � . A directed edge ������	��� is
cut if � and � belong to different blocks in � . Two paths and

 424

5A-4s

0-7803-8736-8/05/$20.00 ©2005 IEEE. ASP-DAC 2005

S

D E F

A B

C T S

D E F

T C

A W1 B

W2 W3 S

D E F

T C

A B

W2 W3

(a) (b) (c)

Fig. 2. Illustration of reconverent path constraint. (a) all three reconvergent
paths from ! to " are unbalanced. If ! is in the switch phase, # , $, and "
will be in relax, release, and hold phase. This puts % and " into relax and
release, thereby causing a conflict at " . The bottom path forces " to be in
switch phase, causing more conflict. (b) wire blocks &(' , &�) , and &�* are
inserted to resolve this QCA clocking inconsistency. (c) some wire blocks are
shared to minimize the area overhead.

+ in ,.- are reconvergent if they diverge from and reconverge
to the same blocks as illustrated in Figure 2(a). If /�02143 denotes
the length of a reconvergent path 1 in ,�- , then /�02143 is defined
to be the number of cut edges along 1 . A formal definition of
zone partitioning problem is as follows:

Definition 1: Zone partitioning: we seek a partitioning of
logic gates in the given netlist into a set of zones so that
cutsize (= total number of cut nets), wire block (= required
during the subsequent zone placement) are minimized. The
area of each partition needs to be bounded (area constraint),
and there should not exist cyclic dependency among partitions
(acyclic constraint). In addition, the length of all reconvergent
paths should be balanced (clocking constraint).

The reconvergent path constraint is illustrated in Figure 2.
Cycles may exist among partitions as long as their lengths are
multiples of four (i.e. because of an assumed 4-phase, QCA
clock). However, it becomes difficult to enforce this constraint
while handling other objectives and constraints. Therefore,
we prevent any cycles from forming at the partition level.
In addition, it is difficult to maintain the reconvergent path
constraint during the partitioning process. Therefore, we allow
the reconvergent path constraint to be violated and perform
a post-process to add wire blocks to fix this problem. Since
the addition of wire blocks causes an overall increase in area
to increase, we minimize the amount of wire blocks that are
needed to completely remove the reconvergent path problems
during zone partitioning.

C. Zone Placement Problem

Assuming that all partitions (= zone) have the same area,
placement of zones becomes a geometric embedding of the
partitioned network onto a 57698 grid, where each logic/wire
block is assigned to a unique location in the grid. In this case,
a bipartite graph exists for every pair of neighboring clocking
levels. We define the k-layered bipartite graph as follows:

Definition 2: K-layered bipartite graph: a directed graph
,�0�:<;>=�3 is k-layered bipartite graph iff (i) : is divided
into ? disjoint partitions, (ii) each partition 1 is assigned a
level, denoted /�@BAC0D1C3 , and (iii) for every edge @FEG0�HI;>JK3 ,
/�@BAC0�J�3
EF/�@BA40�H43ILFM .

Therefore, the zone placement problem is to embed a zone-
level k-layered bipartite graph onto an 5N6O8 grid so that all
blocks in the same layer are placed in the same row. All the

a

b

c

d

e

f

x

y z

0

1

2

0

3

3

(a) (b) (c)

Fig. 3. Illustration of zone partitioning and wire block insertion. (a) directed
graph model of input circuit, (b) zone partitioning under acyclicity and
reconvergent path constraint, (c) wire block insertion, where the numbers
denote the longest path length. The dotted nodes indicate wire blocks.

I/O terminals are assumed to be located on the top and bottom
boundary of each block, and we may insert routing channels
between clocking levels for the subsequent routing. A formal
definition of zone placement problem is as follows:

Definition 3: Zone placement: we seek to place the zones
we obtain from zone partitioning onto a 2D space so that area,
wire crossings and wire length are minimized. Each zone (=
logic/wire block) is labeled with a clocking level (= longest
path length from input zones), and all zones with the same
clocking level should be placed in the same row (clocking
constraint). In addition, all inter-zone wires need to connect
two neighboring rows (neighboring constraint).

III. ZONE PARTITIONING ALGORITHM

A. Zone Partitioning

Let /�@BA402143 denote the longest path length from the input
partitions (partitions with no incoming edges) to partition 1 ,
where the path length is the number of partitions along the
path. Then PRQ�ST@�0�@T3 denotes the total number of wire blocks
to be inserted on an inter-partition edge @ to resolve the
unbalanced reconvergent path problem (clocking constraint
of the QCA zone partitioning problem). Simply, PUQ�ST@V0�@T3WE
/�@BA40�J�3XLY/�@BA40�HC3[Z\M for @(E]0�H�;�J�3 , and the total number of
wiring blocks required without resource sharing is ^]PUQ�ST@V0�@T3 .
Thus, our heuristic approach is to minimize the ^ PUQ�ST@�0�@T3
among all inter-zone edges while maintaining acyclicity. Then,
during post-processing, any remaining clocking problems are
fixed by inserting and sharing wire blocks. An illustration of
zone partitioning and wire block insertion is shown in Figure
3.

First, the cells are topologically sorted and evenly divided
into a number of partitions 021`_a;�1Cbc;edfdfd�1Cgc3 . The partitions are
then level numbered using a breadth-first search. Next, the
acyclic FM partitioning algorithm [4] is performed on adjacent
partitions 1ih and 1Chkj _ . Constraints that must be met during any
cell move include area and acyclicity. The cell gain has two
components: cutsize gain and wire block gain. The former
indicates the reduction in the number of inter-partition wires,
whereas the latter indicates the reduction in the total number
of wire blocks required. We then find the best partition based
on a combined cost function for both cutsize and wire block

 425

gain. Multiple passes are performed on two partitions 1 h and
1 hlj _ until there is no more improvement on the cost. Then,
this acyclic bipartitioning is performed on partitions 1 hlj _ and
1 hlj b , etc.

Movement of a single cell could change /�@eA402143 , the level
number of a partition 1 . Therefore every time a cell move
is made, we check to see if this cell move affects the level
number. Levels can change as a result of a newly introduced
inter-zone edge or from completely removing an inter-zone
edge. To update levels, we maintain a maxparent for each 1
so that the level number of the parent of 1 is /�@BAC0D1C3BZWM . /�@BAC0�m�3
is defined as the level number of the “from block” of a cell n
and /�@eA40�op3 is defined as the level number of the “to block” of
n . In the first case where a new inter-partition edge is created,
/�@BAC0�oq3 is updated if /�@BA40�m�3srY/�@BAC0�oq3 after the cell move. In
this case, /�@BA40�oq3sEt/�@BAC0�m�3�LuM . Then, we recursively update
the maxparent and levels of all downstream partitions. In the
second case where an existing inter-partition edge is removed,
the maxparent again needs to be update.

B. Wire Block Insertion

During post-processing, any remaining clocking problems
are fixed by inserting and sharing wire blocks, while satisfying
wire capacity constraints. The input to this algorithm is the
set of partitions and inter-partition edges. First, a super-source
node is inserted in the graph whose fan-out neighbors are the
original sources in the graph. This is done to ensure that all
sources are in the same clocking zone. Then the single-source
longest path is computed for the graph with the super-source
node as the source–and every partition is assigned a clocking
level based on its position in the longest path from the source.
For a graph with =�- inter-partition edges, this algorithm runs
in exactly v90�=�-�3 iterations. In the algorithm’s next stage, any
edge connecting partitions that are separated by more than one
clock phase is marked, and the edge is added to an array of
bins at every index where a clocking level is missing in the
edge.

The number of wire blocks in each bin is calculated based
on a predetermined capacity for the wire blocks. This capacity
is calculated based on the width of each cell in the grid.
Then the inter-partition edges are distributed amongst the wire
block, filling one wire block to full capacity before filling the
next. It might seem that a better solution would be to evenly
distribute the edges to all the wire blocks in the current level.
This is not true because the wire blocks with the most number
of feed-throughs are placed closer to the logical blocks in the
next stage. This minimizes wire length, and hence the number
of wire crossings.

IV. ZONE PLACEMENT ALGORITHM

A. Placement of k-Layered Bipartite Graph

The logical blocks (obtained from the partitioning stage) and
the wire blocks (obtained from post-processing) are placed
on an 5w6x8 grid with a given aspect ratio and skew. The
individual zone dimensions and the column widths are kept
constant to ensure scalability and manufacturability of this

a

b

c

d

e f

0

2

3

1 x

z

y

a

b

c

d

e f

0

2

3

1 x

z

y

(b) (c)(a)

a

b

c

d

e

f

x

y z

0

1

2

0

3

3

Fig. 4. Illustration of zone placement and wire crossing minimization. (a)
zone partitioning with wire block insertion, (b) zone placement, where a zone-
level k-layered bipartite graph is embedded onto a 2D space, (c) wire crossing
minimization via block re-ordering.

design as clocking lines would have to be laid underneath
QCA circuits with great precision. The partitions are laid out
on the grid, with the cells belonging to the first clocking zone
occupying the leftmost cells of the first row of the grid, and
the next level occupying the leftmost cell of the next row, etc.,
until row S . The next level of cells is placed again on row S
to the right of the rightmost placed cell amongst the S placed
rows. Then, the next level of cells is placed in row SRZyM and
the rest of the cells are placed in a similar fashion until the
first row is reached. This process is repeated until all cells are
placed (thereby forming a “snake-shape”).

The white nodes are white space that is introduced because
of variations in the number of wire and logic blocks among
the various clocking levels. The maximum wire length between
any two partitions in the grid determines the clock frequency
for the entire grid as all partitions are clocked separately. For
the first and last rows (where inter-partition edges are between
partitions in two different columns), maximum wire length
was given more priority as maximum wire length at these
end zones can be twice as bad as the maximum wire length
between partitions on the same column. An illustration of zone
placement and wire crossing minimization is shown in Figure
4.

B. Wire Crossing Minimization

During the next phase, blocks are reordered within each
clocking level to minimize inter-partition wire length and
wire crossings. Two classes of solutions were applied to
minimize the above objectives: an analytical solution that uses
a weighted barycenter method, and Simulated Annealing. The
analytical method only considers wire crossings since as there
is a strong correlation between wire length and the number of
wire crossings.

Analytical Solution: A widely used method for minimizing
wire crossings (introduced by Sugiyama et al. [5]) is to map
the graph into ? -layer bipartite graph. The vertices within
a layer are then permuted to minimize wire crossings. This
method maps well to this problem as we need to only consider
the latter part of the problem (the clocking constraint provides
the k-layer bipartite graph). Still, even in a two-layer graph,
minimizing wire-crossings is NP-hard [5]. Among the many

 426

heuristics proposed, the barycenter heuristic [5] has been
found to be the best heuristic in the general case for this class
of problems. A modified version of the barycenter heuristic
was used to accommodate edge weights. Edge weights repre-
sent the number of inter-partition edges that exist between the
same pair of partitions. The heuristic can be summarized as
follows:

z|{ SaJKn}@B8�~�@eSK0�A�3
E ^\�W� PR@BQ�����~}0�8I3s6W1i�c�eQ�~�Q��a8
0�8I3��
^ � Pq@eQ�����~}0�8I3

where A is the vertex in the variable layer, 8 is the neighbor in
the fixed layer, and � is the set of all neighbors in the fixed
layer.

Simulated Annealing: A move is done by randomly choos-
ing a level in the graph and then swapping two randomly
chosen partitions � 1 _ ;�1 b � in that level in order to minimize
the total wire length and wire crossings. In our approach,
we initially compute the wire length and wire crossing and
incrementally update these values after each move so that the
update can be done in v90�5�3 time where 5 is the number of
neighbors for 1 h .

V. EXPERIMENTAL RESULTS

Our algorithms were implemented in C++/STL, compiled
with gcc v2.96 run on Pentium III 746 MHz machine. The
benchmark set consists of seven biggest circuits from IS-
CAS89 and five biggest circuits from ITC99 suites due to the
availability of signal flow information.

Table I shows the zone partition results for our QCA
placement. The number of partitions is determined such there
are MB���[��MB� majority gates per partition. We set the capacity
of each wire block to 200 QCA cells. We compare acyclic FM
[4] and QCA zone partitioning in terms of cutsize, white space,
and wire blocks needed after zone placement. With QCA
partition, we see a 20% improvement in cutsize at the cost of
a 6% increase in runtime. A new algorithm was implemented
to reduce the number of white space. Our new algorithm for
reducing the number of white nodes involves moving wire
blocks to balance the variation in the number of partitions
per clocking level. Although our algorithm results in a 67%
decrease in wire nodes and 66% decrease in white nodes, there
is a tradeoff in a resulting increase in the number of wire
crossings. Since wire crossings have been seen as a much
more significant problem, we choose to sacrifice an increase
in area for a decrease in the number of wire crossings.

Table II details our zone placement results, where we
report placement area, wire length, and wire crossings for the
benchmarked circuits. We compare the analytical solution to
simulated annealing. Comparing simulated annealing to the
analytical solution, we see an 87% decrease in wire length
and slight increase in wire crossings.

VI. CONCLUSIONS AND ONGOING WORK

In this paper, we proposed a QCA partitioning and place-
ment problem and present an algorithm that will help to
automate the process of design within the constraints imposed

TABLE I
QCA ZONE PARTITIONING RESULTS.

Acyclic FM Zone Partitioner
name cut white wire cut white wire
b14 2948 151 138 2566 168 127
b15 4839 220 260 4119 144 256
b17 16092 1565 1789 13869 1616 1710
b20 6590 641 519 6033 642 518
b21 6672 599 560 6141 622 557
b22 9473 1146 1097 8518 1158 1098

s13207 2708 143 138 1541 144 137
s15850 3023 257 183 2029 254 181
s35932 7371 875 1014 5361 734 1035
s38417 9375 757 784 5868 775 773
s38584 9940 1319 1155 7139 1307 1095
s5378 1206 34 30 866 34 30
s9234 1903 99 81 1419 104 76
Ave 6318 600 596 5036 592 584

Ratio 1.00 1.00 1.00 0.8 0.99 0.98
time 14646 14509

TABLE II
QCA ZONE PLACEMENT RESULTS.

Analytical SA-based
name area length xing length xing
b14 20x17 81 67 23 67
b15 20x24 59 90 34 90
b17 69x52 3014 346 305 345
b20 36x36 414 165 99 166
b21 36x37 140 172 100 172
b22 48x50 1091 230 188 230

s13207 18x21 28 9 28 9
s15850 24x23 81 16 11 14
s35932 45x44 1313 64 78 68
s38417 42x43 493 54 48 54
s38584 55x48 1500 102 110 80
s5378 10x10 3 10 2 9
s9234 15x16 15 11 5 11

Ave 633 103 79 101
Ratio 1.00 1.00 0.13 0.98
time 23 661

by physical scientists. Work to address QCA routing and node
duplication for wire crossing minimization are underway.

ACKNOWLEDGMENT

This research is partially supposed by the National Science
Foundation under project number E-21-6TD.

REFERENCES

[1] C. Lent, B. Isaksen, and M. Lieberman, “Molecular quantum-dot cellular
automata,” J. Am. Chem. Soc., pp. 1056–1063, 2003.

[2] M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, C. Lent, G. Bern-
stein, G. Snider, and F. Peiris, “Quantum-dot cellular automata at a
molecular scale,” Annals of the New York Academy of Science, pp. 225–
239, 2002.

[3] R. Ravichandran, N. Ladiwala, J. Nguyen, M. Niemier, and S. K. Lim,
“Automatic cell placement for quantum-dot cellular automata,” in Proc.
Great Lakes Symposum on VLSI, 2004, pp. 634–639.

[4] J. Cong and S. K. Lim, “Performance driven multiway partitioning,” in
Proc. Asia and South Pacific Design Automation Conf., 2000, pp. 441–
446.

[5] K. Sugiyama, S. Tagawa, and M. Toda, “Methods for visual understanding
of hierarchical system structures,” IEEE Trans. Syst. Man,. Cybern, pp.
109–125, 1981.

 427

