
Wire-driven Microarchitectural Design Space Exploration

Mongkol Ekpanyapong, Sung Kyu Lim, Chinnakrishnan Ballapuram, and Hsien-Hsin S. Lee
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.

{pop,limsk,chinnak,leehs}@ece.gatech.edu

Abstract— In this paper, we propose an interconnect-driven
framework that performs an efficient and effective design space
exploration for deep submicron processor architecture design. At
the heart of our framework named AMPLE are wire delay-driven
microarchitectural floorplanning and adaptive parameter tuning
schemes that address interconnect issues with high exploration
efficiency and accuracy. Our framework significantly outper-
forms the commonly used brute-force and Simulated Annealing
methods in terms of exploration time efficiency as well as the
performance and area quality for a large design space.

I. INTRODUCTION

For today’s high performance processor design, it is crucial
to fully understand the implications between emerging wire
delay issues and each microarchitectural component for a
given type of applications. For example, for applications that
perform intensive floating-point operations, the floating-point
units should be placed closer to the execution units and ALUs.
On the other hand, memory-bound applications should have
their datapath closer to caches. To address the design complex-
ity effectiveness for deep submicron processor, we propose a
new methodology for design space exploration called Adaptive
Microarchitectural Planning Engine (AMPLE), which identi-
fies the most complexity-effective processor configuration, in
terms of performance and performance/area improvement, in a
highly efficient manner for a given suite of target applications.

AMPLE performs interconnect-driven microarchitectural
floorplanning [1] to reduce the communication latency by
placing high bandwith communication modules adjacent to
each other. We then use this new floorplan-based latency
information to tune various architectural parameters to further
optimize the design objectives. AMPLE can effectively alle-
viate wire delay problem during design space exploration. By
increasing the sizes of modules, we may improve the overall
performance from the incremented functionality. However,
there is a point of diminishing return due to the increase of
wire delay for accessing these modules. In order to precisely
determine this break-even point, AMPLE fine-tunes the pa-
rameters based on accurate communication latency given by
floorplanner. In addition, the quality of the proposed parameter
set is accurately measured from a cycle accurate simulator and
is used for the next set of parameters.

II. AMPLE EXPLORATION ALGORITHM

A. Overview of the Approach

To explore all possible permutation of different microar-
chitecture design parameters is extremely tedious and time-
consuming, if not impossible, requiring enormous comput-
ing cycles and patience. Some recent research efforts were

CACTI GENESYS Profiler

Architectual
Floorplanning

Cycle accurate
Simulator

technology
parameter

module-level netlist + profile

module-level layout + wire latency

Adaptive
Parameter
Tuning

architectural
description application

target
frequency

Fig. 1. AMPLE microarchitecture design space exploration framework

attempted and focused on improving the efficiency of the
search process with various heuristics [2], [3]. In our AMPLE
framework as illustrated in Figure 1, the system first reads
the technology parameters, an initial machine description, and
the target application benchmark program as input. For cache-
like or buffer-like structures, the areas and module delays are
estimated using analytical tools, in our case, CACTI [4] from
the HP Western Research Labs. For non-memory components,
GENESYS [5] is used. At the same time, we profile the target
application to collect the statistical interconnection traffic
using Simplescalar [6], a cycle-accurate architecture simulator.

All the module information, statistical interconnection
traffic, and frequency target range are then fed into the
profile-guided floorplanner with an objective of minimizing
the latency (i.e., communication distance) of the most
frequent communication links between modules. We use
our profile-guided floorplanning algorithm developed in [1]
for this purpose. Afterward, the inter-modular latencies are
derived based on the newly generated floorplan. The cycle-
accurate simulator is again used to evaluate the architecture
performance using the new latency cycles. Given the cycle
time, the actual execution time can be computed. Along
with the machine description parameters, the floorplan and
new latency values are given to the AMPLE search engine.
Our adaptive parameter tuning engine, based on the gradient
search heuristic, calculates and determines a new set of

18670-7803-8834-8/05/$20.00 ©2005 IEEE.

architecture parameters and iterates through the entire process
until a satisfactory parameter suite is found.

B. Microarchitecture Model

Ten microarchitecture parameters were investigated for our
target microarchitecture design: Width is the issue width (range
1-8). BTB is the branch target buffer that stores target branch
addresses for predicted taken branches (range 128-1024).
RUU, the Reservation Update Unit [7], combines the func-
tionality of the reservation station and the re-order buffer for
out-of-order execution (range 32-1024). LSQ is the load/store
buffer for resolving address conflicts between loads and stores
(range 16-512). A tri-level cache includes a split L1 I-cache
and L1 D-cache (both range 1KB-64KB), a unified L2 (range
8KB-1MB) and a unified L3 (range 64KB-1MB). ALU (range
1-8) and FPU (range 1-8) are the arithmetic logic unit and the
floating-point unit. The potential values for these parameters
are commonly seen in the state-of-the-art high performance
microprocessors. The range of inter-module access latency
values between major modules in clock cycles are: branch
predictor penalty (5-11), pipeline depth (15-22), inter ALU
communication (1-9), inter-FPU communication (6-28), RUU
access from ALU (1-9), RUU access from FPU (2-29), IL1
access (2-12), DL1 access (2-11), IL2 access (6-44), DL2
access (6-39), L3 access (26-128).

C. Gradient Search

Our adaptive parameter tuning algorithm is presented in Fig-
ure 2. First, the gradient search algorithm was initialized with
Smart Start() algorithm which, based on the characteristics of
each application, assign the initial microarchitecture parameter
values for the starting search point. A good starting point could
reduce the overall design space exploration time substantially
as the gradient search method tends to move toward a local
optimal point in the search space. If the starting search point is
given at a location somewhere close to the optimal point, then
a smaller number of steps will be needed. Given these initial
conditions, we perform Microarch Planning(), which consists
of technology parameter extraction, microarchitectural profil-
ing, floorplanning, and cycle-accurate simulation, as depicted
in Figure 1. Before entering the iterative gradient search for all
N microarchitectural components, the relative importance of
each microarchitectural parameter p for the target application
is determined using Priority Search() algorithm. In essence,
the most sensitive microarchitectural parameter has the highest
priority to be tuned in the main search loop.

The gradient search then enters the iterative design space
exploration loop based on the priority determined by Prior-
ity Search(). For each iteration i, the last known best microar-
chitecture parameter is used as the starting point. The value
of the microarchitectural parameter p at iteration i, denoted
para[p, i], is determined based on two factors: initial stepping
factor (= α) and stepping size (= µ) [8]. Note that prior to
the microarchitectural planning, a parameter pruning algorithm
Para Pruning() is always called to rule out invalid parameters.
The initial stepping factor α value is used only in the first
iteration to provide the initial gradient.

Adaptive Parameter Tuning Algorithm
Smart Start();
Microarch Planning();
PS = Priority Search();
for (parameter p = 1 to N in PS)

para[p, 1] = last known best parameter;
para[p, 2] = (1 + α) × para[p, 1];
Ceilingp(para[p, 2]);
Para Pruning(para[p, 2]);
Microarch Planning();
Calc GFR();
Calc Gain();
i = 3;
while (gain[p, i − 1] > threshold or not cyclic)

compute para[p, i] using Equation 2;
if (gain[p, i − 1] > 0)

Ceilingp(para[p, i]);
else

Floorp(para[p, i]);
Para Pruning(para[p, i]);
Microarch Planning();
Calc Gain();
i++;

Fig. 2. AMPLE design space exploration algorithm

Once inside the while loop, i.e., the main gradient search
loop, a stepping size µ is then used to increase or de-
crease the microarchitecture parameter (compute para[p, i],
see Equation (2)) depending on whether a constructive gain
or a destructive gain is obtained from the last iteration. The
Calc Gain() function in Figure 2 calculates the gain using the
following equation:

gain[p, i] =
exec time[p, i − 1]

exec time[p, i]
− 1 (1)

where exec time[p, i] denotes the overall performance of the
microarchitecture with the current parameter p set to para[p, i]
at iteration i. Essentially, the gain represents the overall perfor-
mance improvement (or degradation) in percentage. If the gain
is negative, then the search is apparently heading toward the
wrong direction and needs to be reversed. Otherwise, it should
continue by increasing the para[p, i] for the next iteration
based on the following equation:

para[p, i] = para[p, i − 1] + µ × gain[p, i − 1]
× (para[p, i − 1] − para[p, i − 2]) (2)

The amount of increase is the product of the stepping size µ,
the gain and the parameter deviation from the previous two
iterations [8].

Note that the stepping size µ determines the search quality
and/or search time. A finer stepping size will lead to a better
quality solution at the cost of a longer search time. On the
other hand, if the stepping size is too big, the result may
diverge and/or miss the optimal opportunity. Whenever a new
para[p, i] is generated, the Ceiling or the Floor function of
the corresponding microarchitecture component p is used to
clamp the parameters to meet the particular criteria of a
microarchitecture component. For example, the number of the
cache sets must be in the power of two for indexability, or the
number of the ALU or FPU has to be an integer.

The whole iterative process for parameter p continues

1868

until one of the following two conditions is met: (1) the
overall performance gain drops below a given threshold, or
(2) the exploration process is going cyclic due to hitting a
repetitive microarchitecture parameter value of p that was
explored earlier. In addition, in the first iteration, we also
calculate a ratio called Gradient First-order Ratio (GFR) using
Calc GFR(), which gives us an estimation of how relevant a
microarchitecture component p is with respect to the target
applications.

D. Smart Start Algorithm

Applications are generally classified into three categories [9]
— processor-bound applications, cache-sensitive applications,
and bandwidth-bound applications. We apply the same clas-
sification scheme in the Smart Start() algorithm to determine
the initial conditions for each benchmark program. The initial
microarchitecture parameter values are predetermined based
on the class it belongs to. For example, for the processor-
bound applications, a wider issue width, more ALUs, and a
larger instruction cache and BTB are used. Using the similar
logistics, the cache-sensitive applications will be allocated
with a larger L1 and L2 data cache. Finally, for the bandwidth-
bound’s class, it is hard to adjust the module parameters
on this class since on-chip microarchitecture modules do
not really improve off-chip memory bandwidth. Toward this
class, we enlarge the L3 size and load/store queue as the
initial conditions. The microarchitecture parameters picked by
Smart start() for the three different application classes are
listed in Table I.

E. Priority Search

The priority among all microarchitectural parameters is also
based on the benchmark classification. Since “high impact
parameters” are more sensitive to the performance, these high
impact parameters are tuned first. For the processor-bound
class, issue width, instruction cache size, BTB size, and the
number of ALUs are given higher priority. For the cache-
sensitive applications, L1 data cache, L2 cache, and load/store
queue have higher priority. For the bandwidth-bound class, all
three level cache and load/store queue are more focused. Note
that if the search time is constrained, the microarchitecture
parameters with lower priority will not be explored at all for
less performance impact is to be expected.

If the search time is limited, spending more time on higher
impact parameters is obviously more rewarding. The best way
to identify the critical parameters is to explore the entire search
space and compute the correlation metric. Nevertheless, with
a large search space, this method is technically impractical. A
more efficient alternative is to use some sample set from all
possible search space and then calculate the correlation based
on that sample set. This method is more practical, but still
require a non-trivial search time. Especially, acquiring a good
sample set that is the most representative for the entire search
space is not trivial. Hence, running more search points will
bring us closer to such a good sample set. Once the correlation
metric is identified, we can use it to perform an extensive
search on the critical microarchitecture parameters in lieu of
searching for the entire search space. This might not result
in the true optimal solution, but can reduce the search time

significantly. Here we propose a Gradient First-order Ratio
(GFR) metric computed as follows:

GFR(p) =
gain[p, 2]

maxq∈N gain[q, 2]
(3)

Although it is not as good as the correlation function, it can be
used to roughly estimate how crucial each parameter is. The
GFR metric requires running the search only twice the number
of parameters (using first two runs). The GFR of a parameter
p is calculated as the ratio of the gain of the first iteration of
parameter i and the maximum among all the parameter gain.

F. Search Pruning

During the design space exploration, many unrealistic com-
binations of architecture parameters can be omitted. For exam-
ple, in order to maintain cache inclusion property [10], the L1
cache size should be less than that of the L2. The following
summarize three guidelines we follow in order to prune the
search space: cache size L1 < L2 < L3, issue width ≥ the
number of ALU, no search in floating-point units for integer
applications. Note that this search pruning approach is also
applied to the brute-force search that we use as a reference
baseline. Another criteria in AMPLE is to enforce the lower
and upper bound constraints. First of all, for a given processor
design, only limited number of resources is available. An upper
bound constraint guarantees that a particular microarchitecture
module will not overgrow to become an overkill. For example,
designing a 20MB or larger L3 cache on-die might not be
very convincing for a 90nm processor. On the other hand,
a lower bound constraint is imposed so that the essential
microarchitecture module will not be completely removed. For
example, at least one ALU is needed.

III. EXPERIMENTAL RESULTS

We assume a 10 GHz processor designed with a 50nm
feature size as projected by ITRS. The technology parameters
based on 50nm are used in our technology scaling models.
We applied search pruning to our brute-force method in
order to reduce the number of simulations. The simulated
annealing approach is based on the algorithm proposed in [2].
For our AMPLE engine, the following constants are used:
initial stepping factor α = 0.10, gain threshold = 100,
and the stepping size µ = 1. We show the design space
exploration results of four different methods including best,
sa, gra, and grad II. All results were reported in absolute
performance (i.e., IPC × clock period) and were normalized
to the average of the brute-force search method. best represents
the best processor design parameters reported by the brute-
force search. sa uses simulated annealing approach. gra is
based on our AMPLE search engine using performance as
the objective function. gra II is using AMPLE technique with
both the performance and die area as the design objectives.
The reason that we used the average of the brute-force search
as the baseline is because this is likely to represent the case
of a random selection configuration.

The total search times are compared in Table II for three
schemes–brute force, simulated annealing, and AMPLE. Run-
time is reported in hours. Most part of the runtime is spent in
cycle accurate simulation, where each simulation took about an

1869

TABLE I

INITIAL CONDITION USED BY SMART START()

Class width BTB RUU LSQ L1 Icache L1 D$ L2 U$ L3 U$ ALU FPU
Processor bound 8 512 256 128 16K 8K 128K 0 6 4
Cache sensitive 4 256 128 256 8K 16K 512K 0 4 2

Bandwidth bound 4 256 128 128 8K 8K 128K 0 4 2

TABLE II

RUNNING TIME COMPARISON

bench brute force annealing gradient
time itr time itr time itr

164.gzip 314 384 34 43 29 36
175.vpr 406 384 50 43 42 35
181.mcf 209 384 29 43 18 36
254.gap 325 384 49 43 36 35

300.twolf 202 384 21 43 18 36
171.swim 830 768 62 43 45 33

179.art 1,561 768 126 43 86 38
189.lucas 396 768 22 43 15 32

Avg. 14.31 1.34 1.00

hour. This translates into 210×1 hour � 42 days for the brute-
force approach without any search pruning heuristics. The total
runtime for brute-force scheme for all benchmark was 17 days
on a 10-machine cluster. For brute-force search, 10 parameters
are examined, and for each parameter, two different values
are studied. From this, it can be seen that number of search
during the brute force search is limited. On the other hand,
simulated annealing and gradient search allows to examine
each parameter with more different values. This can lead to
a better solution especially if there are some parameters that
have more performance impact than the others. In the case of
simulated annealing, we chose an annealing schedule in such
a way that the total runtime is similar to AMPLE. This allows
us for a fair comparison of the solution quality.

Figure 3 shows that all four methods significantly outper-
form the baseline. gra, on the other hand, outperforms best
by 12.7% (up to 2.12 times), sa by 14.1% (up to 1.45 times),
and gra II by 32.4%. Note that finding the optimal solution is
a hard problem since the latency among modules is based on
location information from floorplanner. However, we believe
that the set of optimal and nearly optimal parameters are highly
localized. Gradient search allows us to discover these sets of
points in the solution space faster. From Figure 4, we see that
the best and sa requires about the same area, and it is about
three times smaller than the baseline. The outcome of our gra
algorithm requires one-sixth of the baseline area. In addition,
the outcome of the gra II requires an order of magnitude less
area than the baseline.

IV. CONCLUSIONS

We propose a framework AMPLE that enables an efficient
design space exploration for deep submicron microproces-
sor design. Using AMPLE, we can identify a highly cost-
and complexity-effective set of microarchitecture parameters
within a reasonable amount of time.

REFERENCES

[1] M. Ekpanyapong, J. Minz, T. Watewai, H.-H. S. Lee, and S. K. Lim,
“Profile-Guided Microarchitectural Floorplanning for Deep Submicron
Processor Design,” in Proc. ACM Design Automation Conference, 2004.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

gzip vpr mcf gap twolf swim art lucas avg.

best sa gra gra II

Fig. 3. Performance Speedup (baseline: average brute force = 1.0)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

gzip vpr mcf gap twolf swim art lucas avg.

best sa gra gra II

Fig. 4. Area comparison (baseline: average brute force = 1.0)

[2] J. Cong, A. Jagannathan, G. Reinman, and M. Romesis, “Microarchi-
tecture Evaluation with Physical Planning,” in Proceedings of the 40th
Conference on Design Automation, 2003.

[3] T. Givargis, F. Vahid, and J. Henkel, “System-level Exploration
for Pareto-optimal Configurations in Parameterized System-on-a-chip,”
IEEE Transsactions on VLSI System, vol. 10, no. 4, pp. 416–422,
Decmeber 2002.

[4] P. Shivakumar and N. P. Jouppi, “CACTI 3.0: An Integrated Cache
Timing, Power, and Area Model,” HP Western Research Labs, Tech.
Rep. 2001.2, 2001.

[5] J. C. Eble, V. K. De, D. S. Wills, and J. D. Meindl, “A Generic System
Simulator (GENESYS) for ASIC Technology and Architecture Beyond
2001,” in Int’l ASIC Conference, 1996.

[6] T. M. Austin, “Simplescalar tool suite,” http:/www.simplescalar.com.
[7] G. Sohi and S. Vajapeyam, “Instruction Issue Logic for High-

Performance Interruptable Pipelined Processors,” Proceedings of the
14th Annual International Symposium on Computer Architecture, 1987.

[8] B. Farhang-Boroujeny, Adaptive Filters — Theory and Applications.
John Wiley and Sons, 1998.

[9] J. Huh, D. Burger, and S. W. Keckler, “Exploring the Design Space of
Future CMPs,” in Proceedings of the 2001 International Conference on
Parallel Architectures and Compilation Techniques, Sept. 2001.

[10] J.-L. Baer and W.-H. Wang, “On The Inclusion Properties for Multi-level
Cache Hierarchies,” in Proceedings of the 15th Annual International
Symposium on Computer Architecture, 1988, pp. 73–80.

1870

